Skip to main content

Advertisement

Log in

Biological activities of [1,2,4]triazolo[1,5-a]pyrimidines and analogs

  • Review Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The [1,2,4]triazolo[1,5-a]pyrimidines (TPs) comprise an important class of non-naturally occurring small molecules that aroused the interest of researches. This scaffold is present in diverse important structures in agriculture and medicinal chemistry, such as antibacterial, antifungal, antiviral, antiparasitic, and anticancer. As over the decades the development of the chemistry and application of 1,2,4-triazolo[1,5-a]pyrimidines has continued and even accelerated, in this review, we thoroughly discussed the applications of TPs in both agriculture and medicinal chemistry highlighting the significance of this nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

Aβ:

β-amyloid peptide

ABC:

ATP-binding cassette

AChE:

acetylcholinesterase

AD:

alzheimer’s disease

AHAS:

acetolactate synthase

AIDS:

acquired immunodeficiency syndrome

cAMP:

cyclic adenosine 3′,5′-monophosphate

ATP:

adenosine triphosphate

BET:

bromodomain extra terminal

BRD:

bromodomain family

BuChE:

butyrylcholinesterase

BZD:

benzodiazepine

CA-4:

combretastatin A-4

CDK-2:

cyclin-dependent kinase 2

CNS:

central nervous system

CRF:

corticotropin-releasing factor

dCTPase:

deoxycytidine-5-triphosphate pyrophosphatase 1

CXCR2:

chemokine-coupled receptor

CYP2D6:

cytochrome P450 isozyme 2D6

DHODH:

dihydroorotate dehydrogenase

DPP4:

dipeptidyl peptidase 4

DPPH:

1,1-diphenyl-2-picrylhydrazyl

FABP:

fatty acid-binding protein

FRAP:

ferric reducing antioxidant power

GABA:

gamma-aminobutyric acid

H1N1:

influenza virus A

HBsAg:

HBV surface antigen

HBV:

hepatitis B virus

HCV:

hepatitis C virus

HIV-1:

human immunodeficiency virus type-1

HSV-1:

herpes simplex virus type-1

I.T.P.:

inhibition of tubulin polymerization

LSD1:

lysine-specific demethylase 1

MDR:

multidrug resistance

MetAP-2:

methionine aminopeptidase 2

MT:

microtubules

MTB:

mycobacterium tuberculosis

MTT:

3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyl-tetrazolium bromide

NNRTI:

non-nucleoside reverse transcriptase inhibitor

NS5B:

non-structural protein 5B

NTP-PPases:

nucleoside triphosphate pyrophosphatases

PA-PB1:

polymerase acidic protein-basic protein 1

Peg-IFN:

pegylated interferon

PDE:

phosphodiesterase

PI:

protection index

PI3K:

phosphoinositide 3-kinase

PPAT:

phosphopantetheine adenylyltransferase

PTEN:

phosphatase and tensin homolog

QSAR:

quantitative structure-activity relationship

RdRP:

RNA-dependent RNA polymerase

RT:

reverse transcriptase enzyme

SAR:

structure-activity relationship

S.I.:

selectivity index

TB:

tuberculosis

TDP2:

tyrosyl-DNA phosphodiesterase 2

TMV:

tobacco mosaic virus

TOP2:

topoisomerase II

TP:

triazolopyrimidine

VEGF:

vascular endothelial growth factor

References

  • Abbas EMH, Gomha SM, Farghaly TA (2014) Multicomponent reactions for synthesis of bioactive polyheterocyclic ring systems under controlled microwave irradiation. Arab J Chem 7:623–629

    CAS  Google Scholar 

  • Abdelghani E, Said SA, Assy MG, Hamid AMA (2017) Synthesis and antimicrobial evaluation of some new pyrimidines and condensed pyrimidines. Arab J Chem 10(Supp. 2):S2926–S2933

    CAS  Google Scholar 

  • Abdel-Hafez AA, Elsherief HAH, Jo M, Kurokawa M, Shiraki K, Kawahata T, Otake T, Nakamura N, Hattori M (2002) Synthesis and evaluation of anti-HIV-1 and anti-HSV-1 activities of 4H-[1,2,4]-triazolo[1,5-a]pyrimidin-5-one derivatives. Arznei-Forsh Drug Res 52:833–839

    CAS  Google Scholar 

  • Abdel-Rahman HM, El-Koussi NA, Hassan HY (2009) Fluorinated 1,2,4-triazolo[1,5-a]pyrimidine-6-carboxylic acid derivatives as antimycobacterial agents. Arch Pharm Chem Life Sci 342:94–99

    CAS  Google Scholar 

  • Al-Issa SA (2013) Synthesis and anticancer activity of some fused pyrimidines and related heterocycles. Saudi Pharm J 21:305–316

    CAS  PubMed  Google Scholar 

  • Allen JG, Bourbeau MP, Wohlhieter GE, Bartberger MD, Michelsen K, Hungate R, Gadwood RC, Gaston RD, Evans B, Mann LW, Matison ME, Schneider S, Huang X, Yu D, Andrews PS, Reichelt A, Long AM, Yakowec P, Yang EY, Lee TA, Oliner JD (2009) Discovery and optimization of chromenotriazolopyrimidines as potent inhibitors of the mouse double minute 2-tumor protein 53 protein-protein interaction. J Med Chem 52:7044–7053

    CAS  PubMed  Google Scholar 

  • Altenberg GA (2004) Structure of multidrug-resistance proteins of the ATP-binding cassette (ABC) superfamily. Curr Med Chem Anticancer Agents 4:53–62

    CAS  PubMed  Google Scholar 

  • Arenas-González A, Mendez-Delgado LA, Merino-Montiel P, Padrón JM, Montiel-Smith S, Vega-Báez JL, Meza-Reyes S (2016) Synthesis of monomeric and dimeric steroids containing [1,2,4]triazolo[1,5-a]pyrimidines. Steroids 116:13–19

    PubMed  Google Scholar 

  • Asghar U, Witkiewicz AK, Turner NC, Knudsen ES (2015) The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Disco 14:130–146

    CAS  Google Scholar 

  • Ashour HM, Shaaban OG, Rizk OH, El-Ashmawy IM (2013) Synthesis and biological evaluation of thieno [2′,3′:4,5]pyrimido [1,2-b][1,2,4]triazines and thieno[2,3-d][1,2,4]triazolo[1,5-a]pyrimidines as anti-inflammatory and analgesic agents. Eur J Med Chem 62:341–351

    CAS  PubMed  Google Scholar 

  • Ayral-Kaloustian S, Zhang N, Beyer C (2009) Cevipabulin (TTI-237): preclinical and clinical results for a novel antimicrotubule agent. Methods Find Exp Clin Pharm 31:443–447

    CAS  Google Scholar 

  • Azeredo LFSP, Coutinho JP, Jabor VAP, Feliciano PR, Nonato MC, Kaiser CR, Menezes CMS, Hammes ASO, Caffarena ER, Hoelz LVB, Souza NB, Pereira GAN, Cerávolo IP, Krettli AU, Boechat N (2017) Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors. Eur J Med Chem 126:72–83

    CAS  PubMed  Google Scholar 

  • Ballell L, Bates RH, Young RJ, Alvarez-Gomez D, Alvarez-Ruiz E, Barroso V, Blanco D, Crespo B, Escribano J, González R, Lozano S, Huss S, Santos-Villarejo A, Martín-Plaza JJ, Mendoza A, Rebollo-Lopez MJ, Remuiñan-Blanco M, Lavandera JL, Pérez-Herran E, Gamo-Benito FJ, García-Bustos JF, Barros D, Castro JP, Cammack N (2013) Fueling open-source drug discovery: 177 small-molecule leads against tuberculosis. ChemMedChem 8:313–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bayomi SM, Abdelal AM, El-Ashry SM, Ghoneim OAM (1999) Synthesis of certain new 2,4,5(6)-trisubstituted 1,2,4-triazolo[1,5-alpha]pyrimidines as potential antihypertensive agents. Boll Chim Farm 138:227–232

    CAS  PubMed  Google Scholar 

  • Beck HP, De Graffenreid M, Fox B, Allen JG, Rew Y, Schneider S, Saiki AY, Yu D, Oliner JD, Salyers K, Ye Q, Olson S (2011) Improvement of the synthesis and pharmacokinetic properties of chromenotriazolopyrimidine MDM2-p53 protein-protein inhibitors. Bioorg Med Chem Lett 21:2752–2755

    CAS  PubMed  Google Scholar 

  • Bedingfield PTP, Cowen D, Acklam P, Cunningham F, Parsons MR, McConkey GA, Fishwick CWG, Johnson AP (2012) Factors influencing the specificity of inhibitor binding to the human and malaria parasite dihydroorotate dehydrogenases. J Med Chem 55:5841–5850

    CAS  PubMed  Google Scholar 

  • Belkina AC, Denis GV (2012) BET domain co-regulators in obesity, inflammation and cancer. Nat Rev Cancer 12:465–477

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beyer CF, Zhang N, Hernandez R, Vitale D, Lucas J, Nguyen T, Discafani C, Ayral-Kaloustian S, Gibbons JJ (2008) TTI-237: a novel microtubule-active compound with in vivo antitumor activity. Cancer Res 68:2292–2300

    CAS  PubMed  Google Scholar 

  • Beyer CF, Zhang N, Hernandez R, Vitale D, Nguyen T, Ayral-Kaloustian S, Gibbons JJ (2009) The microtubule-active antitumor compound TTI- 237 has both paclitaxel-like and vincristine-like properties. Cancer Chemother Pharm 64:681–689

    CAS  Google Scholar 

  • Bhatt JD, Chudasama CJ, Patel KD (2015) Pyrazole clubbed triazolo-[1,5-a]pyrimidine hybrids as an antitubercular agents: synthesis, in vitro screening and molecular docking study. Bioorg Med Chem 23:7711–7716

    CAS  PubMed  Google Scholar 

  • Boechat N, Pinheiro LCS, Silva TS, Aguiar ACC, Carvalho AS, Bastos MM, Costa CCP, Pinheiro S, Pinto AC, Mendonça JS, Dutra KDB, Valverde AL, Santos-Filho AO, Ceravolo IP, Krettli AU (2012) New trifluoromethyltriazolopyrimidines as anti-Plasmodium falciparum agents. Molecules 17:8285–8302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borthakur SK, Borthakur S, Goswami D, Boruah P, Kalita PK (2016) Synthesis and antifungal activities of some new 5,7-disubstituted[1,2,4]triazolo[1,5-a]pyrimidin-6-one derivatives. J Heterocycl Chem 53:2079–2083

    CAS  Google Scholar 

  • Brigance RP, Meng W, Fura A, Harrity T, Wang A, Zahler R, Kirby MS, Hamann LG (2010) Synthesis and SAR of azolopyrimidines as potent and selective dipeptidyl peptidase-4 (DPP4) inhibitors for type 2 diabetes. Bioorg Med Chem Lett 20:4395–4398

    CAS  PubMed  Google Scholar 

  • Brunden KR, Lee VMY, Smith III AB, Trojanowski JQ, Ballatore C (2017) Altered microtubule dynamics in neurodegenerative disease: therapeutic potential of microtubule-stabilizing drugs. Neurobiol Dis 105:328–335

    CAS  PubMed  Google Scholar 

  • Brunden KR, Trojanowski JQ, Smith III AB, Lee VMY, Ballatore C (2014) Microtubule-stabilizing agents as potential therapeutics for neurodegenerative disease. Bioorg Med Chem 22:5040–5049

    CAS  PubMed  Google Scholar 

  • Chang L, Xiao M, Yang L, Wang S, Wang SQ, Bender A, Hu A, Chen ZS, Yu B, Liu HM (2018) Discovery of a non-toxic [1,2,4]triazolo[1,5-a]pyrimidin-7-one (WS-10) that modulates ABCB1-mediated multidrug resistance (MDR). Bioorg Med Chem 26:5006–5017

    CAS  PubMed  Google Scholar 

  • Chen CN, Chen Q, Liu YC, Zhu XL, Niu CW, Xi Z, Yang GF (2010) Syntheses and herbicidal activity of new triazolopyrimidine-2-sulfonamides as acetohydroxyacid synthase inhibitor. Bioorg Med Chem 18:4897–4904

    CAS  PubMed  Google Scholar 

  • Chen CN, Lv LL, Ji FQ, Chen Q, Xu H, Niu CW, Xi Z, Yang GF (2009) Design and synthesis of N-2,6-difluorophenyl-5-methoxyl-1,2,4-triazolo[1,5-a]-pyrimidine-2-sulfonamide as acetohydroxyacid synthase inhibitor. Bioorg Med Chem 17:3011–3017

    CAS  PubMed  Google Scholar 

  • Chen Q, Zhu XL, Jiang LL, Liu ZM, Yang GF (2008) Synthesis, antifungal activity and CoMFA analysis of novel 1,2,4-triazolo[1,5-a]pyrimidine derivatives. Eur J Med Chem 43:595–603

    CAS  PubMed  Google Scholar 

  • Chen W, Xiang F, Fu J, Zeng QF, Zhu HL (2011) Synthesis and antifungal evaluation of 1,2,4-triazolo[1,5-a]pyrimidine bearing 1,2,4-triazole heterocycle derivatives. Asian J Chem 23:602–608

    CAS  Google Scholar 

  • Cheng Z, Gong Y, Ma Y, Lu K, Lu X, Pierce LA, Thompson RC, Muller S, Knapp S, Wang J (2013) Inhibition of BET bromodomain targets genetically diverse glioblastoma. Clin Cancer Res 19:1748–1759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chino A, Honda S, Morita M, Yonezawa K, Hamaguchi W, Amano Y, Moriguchi H, Yamazaki M, Aota M, Tomishima M, Masuda N (2019) Synthesis, SAR study, and biological evaluation of novel 2,3-dihydro-1Himidazo[1,2-a]benzimidazole derivatives as phosphodiesterase 10A inhibitors. Bioorg Med Chem 27:3692–3706

    CAS  PubMed  Google Scholar 

  • Chino A, Seo R, Amano Y, Namatame I, Hamaguchi W, Honbou K, Mihara T, Yamazaki M, Tomishima M, Masuda N (2018) Fragment-based discovery of pyrimido[1,2-b]indazole PDE10A inhibitors. Chem Pharm Bull 66:286–294

    CAS  Google Scholar 

  • Cornec AS, James MJ, Kovalevich J, Trojanowski JQ, Lee VMY, Smith III AB, Ballatore C, Brunden KR (2015) Pharmacokinetic, pharmacodynamic and metabolic characterization of a brain retentive microtubule (MT)-stabilizing triazolopyrimidine. Bioorg Med Chem Lett 25:4980–4982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coteron JM, Marco M, Esquivias J, Deng X, White KL, White J, Koltun M, El Mazouni F, Kokkonda S, Katneni K, Bhamidipati R, Shackleford DM, Angulo-Barturen I, Ferrer SB, Jimenez-Díaz MB, Gamo FJ, Goldsmith EJ, Charman WN, Bathurst I, Floyd D, Matthews D, Burrows JN, Rathod PK, Charman SA, Phillips MA (2011) Structure-guided lead optimization of triazolopyrimidine-ring substituents identifies potent Plasmodium falciparum dihydroorotate dehydrogenase inhibitors with clinical candidate potential. J Med Chem 54:5540–5561

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies GE (1973) Antibronchoconstrictor activity of two new phosphodiesterase inhibitors, a triazolopyrazine (ICI 58 301) and a triazolopyrimidine (ICI 63 197). J Pharm Pharmac 25:681–689

    CAS  Google Scholar 

  • Dawood DH, Nossier ES, Ali MM, Mahmoud AE (2020) Synthesis and molecular docking study of new pyrazole derivatives as potent anti-breast cancer agents targeting VEGFR-2 kinase. Bioorg Chem 101:103916

    CAS  PubMed  Google Scholar 

  • Deev SL, Yasco MV, Karpenko IL, Korovina AN, Khandazhinskaya AL, Andronova VL, Galegov GA, Shestakova TS, Ulomskii EN, Rusinov VL, Chupakhin ON, Kukhanova MK (2010) 1,2,4-Triazoloazine derivatives as a new type of herpes simplex virus inhibitors. Bioorg Chem 38:265–270

    CAS  PubMed  Google Scholar 

  • Deng JZ, McMasters DR, Rabbat PMA, Williams PD, Coburn CA, Yan Y, Kuo LC, Lewis SD, Lucas BJ, Krueger JA, Strulovici B, Vacca JP, Lyle TA, Burgey CS (2005) Development of an oxazolopyridine series of dual thrombin/factor Xa inhibitors via structure-guided lead optimization. Bioorg Med Chem Lett 15:4411–4416

    CAS  PubMed  Google Scholar 

  • Deng X, Gujjar R, El Mazouni F, Kaminsky W, Malmquist NA, Goldsmith EJ, Rathod PK, Phillips MA (2009) Structural plasticity of malaria dihydroorotate dehydrogenase allows selective binding of diverse chemical scaffolds. J Biol Chem 284:26999–27009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng X, Kokkonda S, El Mazouni F, White J, Burrows JN, Kaminsky W, Charman SA, Matthews D, Rathod PK, Phillips MA (2014) Fluorine modulates species selectivity in the triazolopyrimidine class of Plasmodium falciparum dihydroorotate dehydrogenase inhibitors. J Med Chem 57:5381–5394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng XQ, Quan LN, Song MX, Wei CX, Quan ZS (2011) Synthesis and anticonvulsant activity of 7-phenyl-6,7-dihydro-[1,2,4] triazolo[1,5-a]pyrimidin-5(4H)-ones and their derivatives. Eur J Med Chem 46:2955–2963

    CAS  PubMed  Google Scholar 

  • Edrees MM, Farghaly TA (2017) Synthesis and antitumor activity of benzo[6′,7′]cyclohepta[1′′,2′′:4′,5′]pyrido[2′,3′-d] [1,2,4]triazolo[4,3-a]pyrimidin-5-ones. Arab JChem 10(Supp. 2):S1613–S1618

  • El Ashry ESH, Awad LF, Teleb M, Ibrahim NA, Abu-Serie MM, Al Moaty MNA (2020) Structure-based design and optimization of pyrimidine- and 1,2,4-triazolo[4,3-a]pyrimidine-based matrix metalloproteinase-10/13 inhibitors via Dimroth rearrangement towards targeted polypharmacology. Bioorg Chem 96:103616

    PubMed  Google Scholar 

  • El-Aleam RHA, George RF, Hassan GS, Abdel-Rahman HM (2020) Synthesis of [1,2,4]triazolo[1,5-α] pyrimidines derivates: antimicrobial activity, DNA gyrase inhibition and molecular docking. Bioorg Chem 94:103411

    Google Scholar 

  • El-Gendy MMA, Shaaban M, Shaaban KA, El-Bondkly AM, Laatsch H (2008) Essramycin: a first triazolopyrimidine antibiotic isolated from nature. J Antibiot 61:149–157

    CAS  Google Scholar 

  • El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran AN, Wortman JR, Alsmark UC, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC, Kummerfeld SK, Pereira-Leal JB, Nilsson D, Peterson J, Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger S, White O, Melville SE, Donelson JE, Andersson B, Stuart KD, Hall N (2005) Comparative genomics of trypanosomatidparasitic protozoa. Science 309:404–409

    CAS  PubMed  Google Scholar 

  • El-Tahir KEH, Al-Khamees HA, Bayomi SM (1995) Cardiovascular effects of some 2-substituted triazolo[1,5-a]pyrimidin-7(4H)one-6-carboxylic acid ethyl esters. Boll Chim Farm 134:604–608

    CAS  PubMed  Google Scholar 

  • Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9:550–562

    CAS  PubMed  Google Scholar 

  • Faizi M, Dabirian S, Tajali H, Ahmadi F, Zavareh ER, Shahhosseini S, Tabatabai AS (2015) Novel agonists of benzodiazepine receptors: design, synthesis, binding assay and pharmacological evaluation of 1,2,4-triazolo[1,5-a]pyrimidinone and 3-amino-1,2,4-triazole derivatives. Bioorg Med Chem 23:480–487

    CAS  PubMed  Google Scholar 

  • Fandzloch M, Arriaga JMM, Sánchez-Moreno M, Wojtczak A, Jezierska J, Sitkowski J, Wiśniewska J, Salas JM, Łakomska I (2017) Strategies for overcoming tropical disease by ruthenium complexes with purine analog: application against Leishmania spp. and Trypanosoma cruzi. J Inorg Biochem 176:144–155

    CAS  PubMed  Google Scholar 

  • Fennell BJ, Naughton JA, Barlow J, Brennan G, Fairweather I, Hoey E, McFerran N, Trudgett A, Bell A (2008) Microtubules as antiparasitic drug targets. Expert Opin Drug Disco 3:501–518

    CAS  Google Scholar 

  • Fischer G (1993) 1,2,4-triazolo[1,5-a]pyrimidines. Adv Heterocycl Chem 57:81–138

    CAS  Google Scholar 

  • Fischer G (2008) Recent progress in 1,2,4-triazolo[1,5-a]pyrimidine chemistry. Adv Heterocycl Chem 95:143–219

    CAS  Google Scholar 

  • Fischer G (2019) Recent advances in 1,2,4-triazolo[1,5-a]pyrimidine chemistry. Adv Heterocycl Chem 128:1–101

    CAS  Google Scholar 

  • Fizer M, Slivka M (2016) Synthesis of [1,2,4-triazolo[1,5-a]pyrimidine (microreview). Chem Heterocycl Compd 52:155–157

    CAS  Google Scholar 

  • Gami SP, Vilapara KV, Khunt HR, Babariya JS, Naliapara YT (2014) Synthesis and antimicrobal activities of some novel triazolo[1,5-a]pyrimidine derivatives. Int Lett Chem Phys Astron 30:127–134

    Google Scholar 

  • Gilandoust M, Harsha KB, Mohan CD, Raquib AR, Rangappa S, Pandey V, Lobie PE, Basappa, Rangappa KS (2018) Synthesis, characterization and cytotoxicity studies of 1,2,3-triazoles and 1,2,4-triazolo[1,5-a]pyrimidines in human breast cancer cells. Bioorg Med Chem Lett 28:2314–2319

    CAS  PubMed  Google Scholar 

  • Gomez L, Massari ME, Vickers T, Freestone G, Vernier W, Ly K, Xu R, McCarrick M, Marrone T, Metz M, Yan YG, Yoder ZW, Lemus R, Broadbent NJ, Barido R, Warren N, Schmelzer K, Neul D, Lee D, Andersen CB, Sebring K, Aertgeerts K, Zhou X, Tabatabaei A, Peters M, Breitenbucher G (2017) Design and synthesis of novel and selective phosphodiesterase 2 (PDE2a) inhibitors for the treatment of memory disorders. J Med Chem 60:2037–2051

    CAS  PubMed  Google Scholar 

  • Gomha SM, Eldebss TMA, Abdulla MM, Mayhoub AS (2014) Diphenylpyrroles: novel p53 activators. Eur J Med Chem 82:472–479

    CAS  PubMed  Google Scholar 

  • Guan A, Liu C, Yang X, Dekeyser M (2014) Application of the intermediate derivatization approach in agrochemical discovery. Chem Rev 114:7079–7107

    CAS  PubMed  Google Scholar 

  • Gujjar R, El Mazouni F, White KL, White J, Creason S, Shackleford DM, Deng X, Charman WN, Bathurst I, Burrows J, Floyd DM, Matthews D, Buckner FS, Charman SA, Phillips MA, Rathod PK (2011) Lead optimization of aryl and aralkyl amine-based triazolopyrimidine inhibitors of plasmodium falciparum dihydroorotate dehydrogenase with antimalarial activity in mice. J Med Chem 54:3935–3949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gujjar R, Marwaha A, El Mazouni F, White J, White KL, Creason S, Shackleford DM, Baldwin J, Charman WN, Buckner FS, Charman S, Rathod PK, Phillips MA (2009) Identification of a metabolically stable triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with antimalarial activity in mice. J Med Chem 52:1864–1872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hajos G, Riedl Z (2008) Bicyclic 5-6 systems with one bridgehead (ring junction) nitrogen atom: three extra heteroatoms 2:1. Compr Heterocycl Chem III 11:671–763

    Google Scholar 

  • Hassan AY, Sarg MT, Bayoumi AH, El-Deeb MA (2018) Synthesis and anticancer evaluation of some novel 5-amino[1,2,4]triazole derivatives. J Heterocycl Chem 55:1450–1478

    CAS  Google Scholar 

  • Hassan GS, El-Sherbeny MA, El-Ashmawy MB, Bayomi SM, Maarouf AR, Badria FA (2017) Synthesis and antitumor testing of certain new fused triazolopyrimidine and triazoloquinazoline derivatives. Arab J Chem 10(Supp.1):S1345–S1355

    CAS  Google Scholar 

  • Heinrich T, Buchstaller HP, Cezanne B, Rohdich F, Bomke J, Friese-Hamim M, Krier M, Knöchel T, Musil D, Leuthner B, Zenke F (2017) Novel reversible methionine aminopeptidase-2 (MetAP-2) inhibitors based on purine and related bicyclic templates. Bioorg Med Chem Lett 27:551–556

    CAS  PubMed  Google Scholar 

  • Hoelz LVB, Calil FA, Nonato MC, Boechat N (2018) Plasmodium falciparum dihydroorotate dehydrogenase; a drug target against malaria. Future Med Chem 10:1853–1874

    CAS  PubMed  Google Scholar 

  • Horchani M, Hajlaoui A, Harrath AH, Mansour L, Jannet HB, Romdhane A (2020) New pyrazolo-triazolo-pyrimidine derivatives as antibacterial agents: design and synthesis, molecular docking and DFT studies. J Mol Struct 1199:127007

    CAS  Google Scholar 

  • Hosseini A, Minucci S (2017) A comprehensive review of lysine-specific demethylase 1 and its roles in cancer. Epigenomics 9:1123–1142

    CAS  PubMed  Google Scholar 

  • Hougaard C, Hammami S, Eriksen BL, Sørensen US, Jensen ML, Strøbæk D, Christophersen P (2012) Evidence for a common pharmacological interaction site on KCa2 channels providing both selective activation and selective inhibition of the human KCa2.1 subtype. Mol Pharm 81:210–219

    CAS  Google Scholar 

  • Huang B, Li C, Chen W, Liu T, Yu M, Fu L, Sun Y, Liu H, De Clercq E, Pannecouque C, Balzarini J, Zhan P, Liu X (2015) Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 3: optimization of [1,2,4]triazolo[1,5-a]pyrimidine core via structure-based and physicochemical property-driven approaches. Eur J Med Chem 92:754–765

    CAS  PubMed  Google Scholar 

  • Huang J, Sengupta R, Espejo AB, Lee MG, Dorsey JA, Richter M, Opravil S, Shiekhattar R, Bedford MT, Jenuwein T, Berger SL (2007) p53 is regulated by the lysine demethylase LSD1. Nature 449:105–108

    CAS  PubMed  Google Scholar 

  • Huang LH, Zheng YF, Lu YZ, Song CJ, Wang YG, Yu B, Liu HM (2012) Synthesis and biological evaluation of novel steroidal[17,16-d][1,2,4]triazolo[1,5-a]pyrimidines. Steroids 77:710–715

    CAS  PubMed  Google Scholar 

  • Huber KVM, Salah F, Radic B, Gridling M, Elkins JM, Stukalov A, Jemth AS, Göktürk C, Sanjiv K, Strömberg K, Pham T, Berglund UK, Colinge J, Bennett KL, Loizou JI, Helleday T, Knapp S, Superti-Furga G (2014) Stereospecific targeting of MTH1 by (S)-crizotinib as an anticancer strategy. Nature 508:222–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwamura H, Suzuki H, Ueda Y, Kaya T, Inaba T (2001) In vitro and in vivo pharmacological characterization of JTE-907, a novel selective ligand for cannabinoid CB2 receptor. J Pharm Exp Ther 296:420–425

    CAS  Google Scholar 

  • Jameel E, Meena P, Maqbool M, Kumar J, Ahmed W, Mumtazuddin S, Tiwari M, Hoda N, Jayaram B (2017) Rational design, synthesis and biological screening of triazinetriazolopyrimidine hybrids as multitarget anti-Alzheimer agents. Eur J Med Chem 136:36–51

    CAS  PubMed  Google Scholar 

  • Jiang L, Chen C, Zhou Y, Chen Q, Yang G (2009) Synthesis and herbicidal activities of novel 1,2,4-triazolo[1,5-a]-pyrimidine containing oxime ether moiety. Chin J Org Chem 29:1392–1404

    CAS  Google Scholar 

  • Jiang N, Deng XQ, Li FN, Quan ZS (2012) Synthesis of novel 7-substituted-5-phenyl-[1,2,4]triazolo[1,5-a]pyrimidines with anticonvulsant activity. Iran J Pharm Res 11:799–806

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson TC, Mann RK, Schmitzer PR, Cast RE, de Boer GJ (2012a) Triazolopyrimidines. In: Kramer W, Schirmer U, Jeschke P, Witschel M (eds) Modern crop protection compounds. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 99–117

    Google Scholar 

  • Johnson TC, Mann RK, Schmitzer PR, Gast RE (2012b) Acetohydroxyacid synthase inhibiting triazolopyrimidine herbicides. In: Lamberth C, Dinges J (eds) Bioactive heterocyclic compound classes: agrochemicals. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 51–60

    Google Scholar 

  • Jung IP, Ha NR, Lee SC, Ryoo SW, Yoon MY (2016) Development of potent chemical antituberculosis agents targeting Mycobacterium tuberculosis acetohydroxyacid synthase. Int J Antimicrob Agents 48:247–258

    CAS  PubMed  Google Scholar 

  • Khalymbadzha IA, Shestakova TS, Subbotina JO, Eltsov OS, Musikhina AA, Rusinov VL, Chupakhin ON, Karpenko IL, Jasko MV, Kukhanova MK, Deev SL (2014) Synthesis of acyclic nucleoside analoges based on 1,2,4-triazolo [1,5-a]pyrimidin-7-ones by one-step Vorbrüggen glycosylation. Tetrahedron 70:1298–1305

    CAS  Google Scholar 

  • Khare S, Nagle AS, Biggart A, Lai YH, Liang F, Davis LC, Barnes SW, Mathison CJN, Myburgh E, Gao MY, Gillespie JR, Liu X, Tan JL, Stinson M, Rivera IC, Ballard J, Yeh V, Groessl T, Federe G, Koh HXY, Venable JD, Bursulaya B, Shapiro M, Mishra PK, Spraggon G, Brock A, Mottram JC, Buckner FS, Rao SPS, Wen BG, Walker JR, Tuntland T, Molteni V, Glynne RJ, Supek F (2016) Proteasome inhibition for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 537:229–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim ND, Park ES, Kim YH, Moon SK, Lee SS, Ahn SK, Yu DY, No KT, Kim KH (2010) Structure-based virtual screening of novel tubulin inhibitors and their characterization as anti-mitotic agents. Bioorg Med Chem 18:7092–7100

    CAS  PubMed  Google Scholar 

  • Kleschick WA, Costales MJ, Dunbar JE, Meikle RW, Monte WT, Pearson NR, Snider SW, Vinogradoff AP (1990) New herbicidal derivatives of 1,2,4‐triazolo[1,5‐a]pyrimidine. Pestic Sci 29:341–355

    CAS  Google Scholar 

  • Kokkonda S, Deng X, White KL, Coteron JM, Marco M, de las Heras L, White J, El Mazouni F, Tomchick DR, Manjalanagara K, Rudra KR, Chen G, Morizzi J, Ryan E, Kaminsky W, Leroy D, Martínez-Martínez MS, Jimenez-Diaz MB, Bazaga SF, Angulo-Barturen I, Waterson D, Burrows JN, Matthews D, Charman SA, Phillips MA, Rathod PK (2016) Tetrahydro-2-naphthyl and 2-indanyl triazolopyrimidines targeting Plasmodium falciparum dihydroorotate dehydrogenase display potent and selective antimalarial activity. J Med Chem 59:5416–5431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Komykhov SA, Tkachenko IG, Musatov VI, Diachkov MV, Chebanov VA, Desenko SM (2016) Multicomponent synthesis in water of 7-unsubstituted 4,7-dihydro-1,2,4-triazolo[1,5-a]pyrimidines and their antimicrobial and antifungal activity. ARKIVOC iv:277–287

    Google Scholar 

  • Kovalevich J, Cornec AS, Yao Y, James M, Crowe A, Lee VMY, Trojanowski JQ, Smith III AB, Ballatore C, Brunden KR (2016) Characterization of brain-penetrant pyrimidine-containing molecules with differential microtubule-stabilizing activities developed as potential therapeutic agents for Alzhheimer’s disease and related tauopathies. J Pharm Exp Ther 357:432–450

    CAS  Google Scholar 

  • Kumar J, Gill A, Shaikh M, Singh A, Shandilya A, Jameel E, Sharma N, Mrinal N, Hoda N, Jayaram B (2018) Pyrimidine-trialopyrimidine and pyrimidine-pyridine hibrids as potential acetylcholine inhibitors for Alzheimer’s disease. Med Chem Drug Disco 3:736–747

    CAS  Google Scholar 

  • Kumar J, Meena P, Singh A, Jameel E, Maqbool M, Mobashir M, Shandilya A, Tiwari M, Hoda N, Jayaram B (2016) Synthesis and screening of triazolopyrimidine scaffold as multifunctional agents for Alzheimer’s disease therapies. Eur J Med Chem 119:260–277

    CAS  PubMed  Google Scholar 

  • Lahmidi S, Anouar EH, El Hafi M, Boulhaoua M, Ejjoummany A, El Jemli M, El Essassi EM, Mague JT (2019a) Synthesis, X-ray, spectroscopic characterization, DFT and antioxidant activity of 1,2,4-triazolo[1,5-a]pyrimidine derivatives. J Mol Struct 1177:131–142

    CAS  Google Scholar 

  • Lahmidi S, Anouar EH, El Hamdaoui L, Ouzidan Y, Kaur M, Jasinski JP, Sebbar NK, Essassi EM, El Moussaouit M (2019b) Synthesis, crystal structure, spectroscopic characterization, hirshfeld surface analysis, DFT calculation and antibacterial activity of ethyl 2-(4-vinylbenzyl)-2-(5- methyl-[1,2,4]triazolo[1,5-a] pyrimidin-7-yl)-3-(4-vinylphenyl) propanoate. J Mol Struct 1191:66–75

    CAS  Google Scholar 

  • Łakomska I, Fandzloch M (2016) Application of 1,2,4-triazolo[1,5-a]pyrimidines for the design of coordination compounds with interesting structures and new biological properties. Coord Chem Rev 327-328:221–241

    Google Scholar 

  • Łakomska I, Jakubowski M, Barwiołek M, Muzioł T (2019) Different bonding of triazolopyrimidine to platinum (IV). Structural and in vitro cytotoxicity studies. Polyhedron 160:123–129

    Google Scholar 

  • Lamberth C (2018) Agrochemical lead optimization by scaffold hopping. Pest Manag Sci 72:282–292

    Google Scholar 

  • Lan H, Cheng CC, Kowalski TJ, Pang L, Shan L, Chuang CC, Jackson J, Rojas-Triana A, Bober L, Liu L, Voigt J, Orth P, Yang X, Shipps Jr GW, Hedrick JA (2011) Small-molecule inhibitors of FABP4/5 ameliorate dyslipidemia but not insulin resistance in mice with diet-induced obesity. J Lipid Res 52:646–656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lepri S, Nannetti G, Muratore G, Cruciani G, Ruzziconi R, Mercorelli B, Palù G, Loregian A, Goracci L (2014) Optimization of small-molecule inhibitors of influenza virus polymerase: from thiophene-3-carboxamide to polyamido scaffolds. J Med Chem 57:4337–4350

    CAS  PubMed  Google Scholar 

  • Li H, Linton A, Tatlock J, Gonzalez J, Borchardt A, Abreo M, Jewell T, Patel L, Drowns M, Ludlum S, Goble M, Yang M, Blazel J, Rahavendran R, Skor H, Shi S, Lewis C, Fuhrman S (2007) Allosteric inhibitors of hepatitis C polymerase: discovery of potent and orally bioavailable carbon-linked dihydropyrones. J Med Chem 50:3969–3972

    CAS  PubMed  Google Scholar 

  • Li H, Tatlock J, Linton A, Gonzalez J, Jewell T, Patel L, Ludlum S, Drowns M, Rahavendran SV, Skor H, Hunter R, Shi ST, Herlihy KJ, Parge H, Hickey M, Yu X, Chau F, Nonomiya J, Lewis C (2009) Discovery of (R)-6-cyclopentyl-6-(2-(2,6-diethylpyridin-4-yl)ethyl)-3-(5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yl)methyl)-4-hydroxy-5,6-dihydropyran-2-one (PF-00868554) as a potent and orally available hepatitis c virus polymerase inhibitor. J Med Chem 52:1255–1258

    CAS  PubMed  Google Scholar 

  • Li Q, Chen YM, Hu YG, Luo X, Ko JKS, Cheung CW (2016) Synthesis and biological activity of fused furo[2,3-d]pyrimidinone derivatives as analgesic and antitumor agents. Res Chem Intermed 42:939–949

    CAS  Google Scholar 

  • Liu YC, Qu RY, Chen Q, Yang JF, Cong-Wei N, Zhen X, Yang GF (2016) Triazolopyrimidines as a new herbicidal lead for combating weed resistance associated with acetohydroxyacid synthase mutation. J Agric Food Chem 64:4845–4857

    CAS  PubMed  Google Scholar 

  • Liu Z, Yang G, Qin X (2001) Syntheses and biological activities of novel diheterocyclic compounds containing 1,2,4‐triazolo[1,5‐a]pyrimidine and 1,3,4‐oxadiazole. J Chem Technol Biotechnol 76:1154–1158

    CAS  Google Scholar 

  • Llona-Minguez S, Häggblad M, Martens U, Throup A, Loseva O, Jemth AS, Lundgren B, Scobie M, Helleday T (2017) Diverse heterocyclic scaffolds as dCTP pyrophosphatase 1 inhibitors. Part 1: triazoles, triazolopyrimidines, triazinoindoles, quinoline hydrazones and arylpiperazines. Bioorg Med Chem Lett 27:3897–3904

    CAS  PubMed  Google Scholar 

  • Lou K, Yao Y, Hoye AT, James MJ, Cornec AS, Hyde E, Gay B, Lee VMY, Trojanowski JQ, Smith III AB, Brunden KR, Ballatore C (2014) Brain-penetrant, orally bioavailable microtubule-stabilizing small molecules are potential candidate therapeutics for Alzheimer’s disease and related tauopathies. J Med Chem 57:6116–6127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lunn CA, Reich EP, Fine JS, Lavey B, Kozlowski JA, Hipkin RW, Lundell DJ, Bober L (2008) Biology and therapeutic potential of cannabinoid CB2 receptor inverse agonists. Br J Pharm 153:226–239

    CAS  Google Scholar 

  • Luo Y, Zhang S, Liu ZJ, Chen W, Fu J, Zeng QF, Zhu HL (2013) Synthesis and antimicrobical evaluation of a novel class of 1,3,4-thiadiazole: derivatives bearing 1,2,4-triazolo[1,5-a] pyrimidine moiety. Eur J Med Chem 64:54–61

    CAS  PubMed  Google Scholar 

  • Marwaha A, White J, El Mazouni F, Creason SA, Kokkonda S, Buckner FS, Charman SA, Phillips MA, Rathod PK (2012) Bioisosteric transformations and permutations in the triazolopyrimidine scaffold to identify the minimum pharmacophore required for inhibitory activity against Plasmodium falciparum dihydroorotate dehydrogenase. J Med Chem 55:7425–7436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Massari S, Nannetti G, Desantis J, Muratore G, Sabatini S, Manfroni G, Mercorelli B, Cecchetti V, Palù G, Cruciani G, Loregian A, Goracci L, Tabarrini O (2015) A broad anti-influenza hybrid small molecule that potently disrupts the interaction of polymerase acidic protein-basic protein 1 (PA-PB1) subunits. J Med Chem 58:3830–3842

    CAS  PubMed  Google Scholar 

  • Méndez-Arriaga JM, Esteban-Parra GM, Juárez MJ, Rodríguez-Diéguez A, Sánchez-Moreno M, Isac-García J, Salas JM (2017) Antiparasitic activity against trypanosomatid diseases and novel metal complexes derived from the first time characterized 5-phenyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one. J Inorg Biochem 175:217–224

    PubMed  Google Scholar 

  • Méndez-Arriaga JM, Oyarzabal I, Escolano G, Rodríguez-Diéguez A, Sánchez-Moreno M, Salas JM (2018) In vitro leishmanicidal and trypanocidal evaluation and magnetic properties of 7-amino-1,2,4-triazolo[1,5-a]pyrimidine Cu (II) complexes. J Inorg Biochem 180:26–32

    PubMed  Google Scholar 

  • Méndez-Arriaga JM, Rodríguez-Diéguez A, Sánchez-Moreno M (2020) In vitro leishmanicidal activity of copper (II) 5,7-dimethyl-1,2,4-triazolo [1,5-a]pyrimidine complex and analogos transition metal series. Polyhedron 176:114272

    Google Scholar 

  • Montel F, Lamberth C, Jung PMJ (2008) First synthesis of 7-amido-[1,2,4]triazolo[1,5-a]pyrimidines using halogen-metal exchange. Tetrahedron 64:6372–6376

    CAS  Google Scholar 

  • Monti L, Wang SC, Oukoloff K, Smith III AB, Brunden KR, Caffrey CR, Ballatore C (2018) Brain-penetrant triazolopyrimidine and phenylpyrimidine microtubule stabilizers as potential leads to treat human African trypanosomiasis. Chem Med Chem 13:1751–1754

    CAS  PubMed  Google Scholar 

  • Moreau RJ, Skepper CK, Appleton BA, Blechschmidt A, Balibar CJ, Benton BM, Drumm III JE, Feng BY, Geng M, Li C, Lindvall MK, Lingel A, Lu Y, Mamo M, Mergo W, Polyakov V, Smith TM, Takeoka K, Uehara K, Wang L, Wei JR, Weiss AH, Xie L, Xu W, Zhang Q, de Vicente J (2018) Fragment-based drug discovery of inhibitors of Phosphopantetheine Adenylyltransferase from gram-negative bacteria. J Med Chem 61:3309–3324

    CAS  PubMed  Google Scholar 

  • Murugan K, Raichurkar AV, Khan FRN, Iyer PS (2015) Synthesis and in vitro evaluation of novel 8-aminoquinoline-pyrazolopyrimidine hybrids as potent antimalarial agents. Bioorg Med Chem Lett 25:1100–1103

    Google Scholar 

  • Nagata K, Kawaguchi A, Naito T (2008) Host factors for replication and transcription of the influenza virus genome. Rev Med Virol 18:247–260

    CAS  PubMed  Google Scholar 

  • Nasr M, Nasr A (2002) Synthesis and antibacterial activity of fused 1,2,4-triazolo[4,3-a]quinoxaline and oxopyrimido[2′,1′:5,1]-1,2,4-triazolo[4,3-a]quinoxaline derivatives. Arch Pharm 335:389–394

    CAS  Google Scholar 

  • Novinson T, Springer RH, O’Brien DE, Scholten MB, Robins RK (1982) 2-(alkylthio)-1,2,4-triazolo[1,5-a]pyrimidines as adenosine cyclic 3′,5′-monophosphate phosphodiesterase inhibitors with potential as new cardiovascular agents. J Med Chem 25:420–426

    CAS  PubMed  Google Scholar 

  • Ochoa C, Goya P (2000) Six-membered ring systems: triazines, tetrazines and fused ring polyaza systems. In: Gribble GW, Gilchrist TL (eds) Progress in heterocyclic chemistry. Pergamon, Amsterdam, vol 12, pp 294-316

  • Ohnishi H, Yamaguchi K, Shimada S, Suzuki Y, Kumagai A (1981) A new approach to the treatment of atherosclerosis and Trapidil as an antagonist to platelet-derived growth factor. Life Sci 28:1641–1646

    CAS  PubMed  Google Scholar 

  • Ojha PK, Roy K (2010) Chemometric modeling, docking and in silico design of triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors as antimalarials. Eur J Med Chem 45:4645–4656

    CAS  PubMed  Google Scholar 

  • Oukoloff K, Kovalevich J, Cornec AS, Yao Y, Owyang ZA, James M, Trojanowski JQ, Lee VMY, Smith III AB, Brunden KR, Ballatore C (2018) Design, synthesis and evaluation of photoactivatable derivatives of microtubule (MT)-active [1,2,4]triazolo[1,5-a]pyrimidines. Bioorg Med Chem Lett 28:2180–2183

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oukoloff K, Lucero B, Francisco KR, Brunden KR, Ballatore C (2019) 1,2,4-Triazolo[1,5-a]pyrimidines in drug design. Eur J Med Chem 165:332–346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patil V, Kale M, Raichurkar A, Bhaskar B, Prahlad D, Balganesh M, Nandan S, Hameed PS (2014) Design and synthesis of triazolopyrimidineacylsulfonamides as novel anti-mycobacterial leads acting through inhibition of acetohydroxyacid synthase. Bioorg Med Chem Lett 24:2222–2225

    CAS  PubMed  Google Scholar 

  • Pezzuto JM, Che CT, McPherson DD, Zhu JP, Topcu G, Erdelmeier CAJ, Cordell GA (1991) DNA as an affinity probe useful in the detection and isolation of biologically active natural products. J Nat Prod 54:1522–1530

    CAS  PubMed  Google Scholar 

  • Phillips MA, Gujjar R, Malmquist NA, White J, El Mazouni F, Baldwin J, Rathod PK (2008) Triazolopyrimidine-based dihydroorotate dehydrogenase inhibitors with potent and selective activity against the malaria parasite Plasmodium falciparum. J Med Chem 51:3649–3653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips MA, White KL, Kokkonda S, Deng X, White J, El Mazouni F, Marsh K, Tomchick DR, Manjalanagara K, Rudra KR, Wirjanata G, Noviyanti R, Price RN, Marfurt J, Shackleford DM, Chiu FCK, Campbell M, Jimenez-Diaz MB, Bazaga SF, Angulo-Barturen I, Martinez MS, Lafuente-Monasterio M, Kaminsky W, Silue K, Zeeman AM, Kocken C, Leroy D, Blasco B, Rossignol E, Rueckle T, Matthews D, Burrows JN, Waterson D, Palmer MJ, Rathod PK, Charman SA (2016) A triazolopyrimidine-based dihydroorotate dehydrogenase inhibitor with improved drug-like properties for treatment and prevention of malaria. ACS Infect Dis 2:945–957

    CAS  PubMed  PubMed Central  Google Scholar 

  • Porter DW, Bradley M, Brown Z, Canova R, Charlton S, Cox B, Hunt P, Kolarik D, Lewis S, O’Connor D, Reilly J, Spanka C, Tedaldi L, Watson SJ, Wermuth R, Press NJ (2014) The discovery of potent, orally bioavailable pyrazolo and triazolopyrimidine CXCR2 receptor antagonists. Bioorg Med Chem Lett 24:72–76

    CAS  PubMed  Google Scholar 

  • Puissant A, Frumm SM, Alexe G, Bassil CF, QiJ, Chanthery YH, Nekritz EA, Zeid R, Gustafson WC, Greninger P, Garnett MJ, McDermott U, Benes CH, Kung AL, Weiss WA, Bradner JE, Stegmaier K (2013) Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov 3:308–323

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quintieri L, Fantin M, Vizler C (2007) Identification of molecular determinants of tumor sensitivity and resistance to anticancer drugs. Adv Exp Med Biol 593:95–104

    PubMed  Google Scholar 

  • Raux B, Voitovich Y, Derviaux C, Lugari A, Rebuffet E, Milhas S, Priet S, Roux T, Trinquet E, Guillemot JC, Knapp S, Brunel JM, Fedorov AY, Collette Y, Roche P, Betzi S, Combes S, Morelli X (2016) Exploring selective inhibition of the first bromodomain of the human bromodomain and extra-terminal domain (BET) proteins. J Med Chem 59:1634–1641

    CAS  PubMed  Google Scholar 

  • Reis RAG, Felipe Calil FA, Feliciano PR, Pinheiro MP, Nonato MC (2017) The dihydroorotate dehydrogenases: past and present. Arch Biochem Biophys 632:175–191

    CAS  PubMed  Google Scholar 

  • Renyu Q, Yuchao L, Wishwajith WM, Kandegama W, Qiong C, Guangfu Y (2018) Recent applications of triazolopyrimidine-based bioactive compounds in medicinal and agrochemical chemistry. Mini-Rev Med Chem 18:781–793

    PubMed  Google Scholar 

  • Requena CE, Perez-Moreno G, Horváth A, Vértessy BG, Ruiz-Pérez LM, González-Pacanowska D, Vidal AE (2016) The nucleotidohydrolases DCTPP1 and dUTPase are involved in the cellular response to decitabine. Biochem J 473:2635–2643

    CAS  PubMed  Google Scholar 

  • Revankar GR, Robins RK (1975) Synthesis and biological activity of some nucleosides resembling guanosine: imidazo[1,2-a]pyrimidine nucleosides. Ann NY Acad Sci 255:166–176

    CAS  PubMed  Google Scholar 

  • Ribeiro CJA, Kankanala J, Xie J, Williams J, Hideki Aihara H, Wang Z (2019) Triazolopyrimidine and triazolopyridine scaffolds as TDP2 inhibitors. Bioorg Med Chem Lett 29:257–261

    CAS  PubMed  Google Scholar 

  • Richardson CM, Williamson DS, Parratt MJ, Borgognoni J, Cansfield AD, Dokurno P, Francis GL, Howes R, Moore JD, Murray JB, Robertson A, Surgenor AE, Torrance CJ (2006) Triazolo[1,5-a]pyrimidines as novel CDK2 inhibitors: protein structure-guided design and SAR. Bioorg Med Chem Lett 16:1353–1357

    CAS  PubMed  Google Scholar 

  • Rizzo M, Rizvi AA, Spinas GA, Rini GB, Berneis K (2009) Glucose lowering and anti-atherogenic effects of incretin-based therapies: GLP-1 analoges and DPP-4-inhibitors. Expert Opin Invest Drugs 18:1495–1503

    CAS  Google Scholar 

  • Sáez-Calvo G, Sharma A, Balaguer FA, Barasoain I, Rodríguez-Salarichs J, Olieric N, Munõz-Hernández H, Berbís MA, Wendeborn S, Peñalva MA, Matesanz R, Canales A, Prota AE, Jímenez-Barbero J, Andreu JM, Lamberth C, Steinmetz MO, Díaz JF (2017) Triazolopyrimidines are microtubule-stabilizing agents that bind the vinca inhibitor site of tubulin. Cell Chem Biol 24:737–750

    PubMed  Google Scholar 

  • Safari F, Bayat M, Nasri S, Karami S (2020) Synthesis and evaluation of anti-tumor activity of novel triazolo[1,5-a]pyrimidine on cancer cells by induction of cellular apoptosis and inhibition of epithelial-to-mesenchymal transition process. Bioorg Chem Med Lett 30:127111

    CAS  Google Scholar 

  • Said SA, Amr AEGA, Sabry NM, Abdalla MM (2009) Analgesic, anticonvulsant and anti-inflammatory activities of some synthesized benzodiazipine, triazolopyrimidine and bis-imide derivatives. Eur J Med Chem 44:4787–4792

    CAS  PubMed  Google Scholar 

  • Saito T, Obitsu T, Minamoto C, Sugiura T, Matsumura N, Ueno S, Kishi A, Katsumata S, Nakai H, Toda M (2011) Pyrazolo[1,5-a]pyrimidines, triazolo[1,5-a]pyrimidines and their tricyclic derivatives as corticotropin-releasing factor 1 (CRF1) receptor antagonists. Bioorg Med Chem 19:5955–5966

    CAS  PubMed  Google Scholar 

  • Salas JM, Romero MA, Sánchez MP, Quirós M (1999) Metal complexes of [1,2,4]triazolo-[1,5-a]pyrimidine derivatives. Coord Chem Rev 193–195:1119–1142

    Google Scholar 

  • Sanchez RM, Erhard K, Hardwicke MA, Lin H, McSurdy-Freed J, Plant R, Raha K, Rominger CM, Schaber MD, Spengler MD, Moore ML, Yu H, Luengo JI, Tedesco R, Rivero RA (2012) Synthesis and structure-activity relationships of 1,2,4-triazolo[1,5-a]pyrimidin-7(3H)-ones as novel series of potent β isoform selective phosphatidylinositol 3-kinase inhibitors. Bioorg Med Chem Lett 22:3198–3202

    CAS  PubMed  Google Scholar 

  • Sato Y, Shimogi Y, Fujita H, Nishino H, Mizuno H, Kobayashi S, Kumakura S (1980) Studies on cardiovascular agents. 6. Synthesis and coronary vasodilating and antihypertensive activities of 1,2,4-triazolo[l,5-a]pyrimidines fused to heterocyclic systems. J Med Chem 23:927–937

    CAS  PubMed  Google Scholar 

  • Schuehly W, Paredes JMV, Kleyer J, Huefner A, Anavi-Goffer S, Raduner S, Altmann KH, Gertsch J (2011) Mechanisms of osteoclastogenesis inhibition by a novel class of biphenyl-type cannabinoid CB2 receptor inverse agonists. Chem Biol 18:1053–1064

    CAS  PubMed  Google Scholar 

  • Serey RA, Torres R, Latorre BA (2007) Pre- and post-infection activity of new fungicides against Botrytis cinerea and other fungi causing decay of table grapes. Cienc Inv Agr 34:215–224

    Google Scholar 

  • Shaban MAE, Morgaan AEA (1999) The chemistry of 1,2,4-triazolopyrimidines I: 1,2,4-triazolo[4,3-a]pyrimidines. Adv Heterocycl Chem 73:131–176

    CAS  Google Scholar 

  • Shaban MAE, Morgaan AEA (2000a) The chemistry of 1,2,4-triazolopyrimidines II: 1,2,4-triazolo[4,3-c]pyrimidines. Adv Heterocycl Chem 75:243–281

    Google Scholar 

  • Shaban MAE, Morgaan AEA (2000b) The chemistry of 1,2,4-triazolopyrimidines III: 1,2,4-triazolo[1,5-c]pyrimidines. Adv Heterocycl Chem 77:345–394

    CAS  Google Scholar 

  • Silva ER, Boechat N, Pinheiro LCS, Bastos MM, Costa CCP, Bartholomeu JC, da Costa TH (2015) Novel selective inhibitor of Leishmania (Leishmania) amazonensis arginase. Chem Biol Drug Des 86:969–978

    PubMed  Google Scholar 

  • Singer RA, Ragan JA, Bowles P, Chisowa E, Conway BG, Cordi EM, Leeman KR, Letendre LJ, Sieser JE, Sluggett GW, Stanchina CL, Strohmeyer H (2014) Synthesis of Filibuvir. Part I. Diastereoselective preparation of a β-hydroxy alkynyl oxazolidinone and conversion to a 6,6-disubstituted 2H-pyranone. Org Process Res Dev 18:26–35

    CAS  Google Scholar 

  • Singh A, Maqbool M, Mobashir M, Hoda N (2017) Dihydroorotate dehydrogenase: A drug target for the development of antimalarials. Eur J Med Chem 125:640–651

    CAS  PubMed  Google Scholar 

  • Singh PK, Choudhary S, Kashyap A, Verma H, Kapil S, Kumar M, Arora M, Silakari O (2019) An exhaustive compilation on chemistry of triazolopyrimidine: a journey through decades. Bioorg Chem 88:102919

    CAS  PubMed  Google Scholar 

  • Skepper CK, Moreau RJ, Appleton BA, Benton BM, Drumm III JE, Feng BY, Geng M, Hu C, Li C, Lingel A, Lu Y, Mamo M, Mergo W, Mostafavi M, Rath CM, Steffek M, Takeoka KT, Uehara K, Wang L, Wei JR, Xie L, Xu W, Zhang Q, de Vicente J (2018) Discovery and optimization of Phosphopantetheine Adenylyltransferase inhibitors with gram-negative antibacterial activity. J Med Chem 61:3325–3349

    CAS  PubMed  Google Scholar 

  • Steinmetz MO, Prota AE (2018) Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol 28:776–792

    CAS  PubMed  Google Scholar 

  • Tabrizi MA, Baraldi PG, Ruggiero E, Saponaro G, Baraldi S, Poli G, Tuccinardi T, Ravani A, Vincenzi F, Borea PA, Varani K (2016) Synthesis and structure activity relationship investigation of triazolo[1,5-a]pyrimidines as CB2 cannabinoid receptor inverse agonists. Eur J Med Chem 113:11–27

    Google Scholar 

  • Tang W, Shi DQ (2010) Synthesis and herbicidal activity of O,O-dialkylN-[2-(5,7-dimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-yloxy)benzoxyl]-1-amino-1-substituted benzyl phosphonates. J Heterocycl Chem 47:162–166

    CAS  Google Scholar 

  • Tee EHL, Karoli T, Ramu S, Huang JX, Butler MS, Cooper MA (2010) Synthesis of essramycin and comparison of its antibacterial activity. J Nat Prod 73:1940–1942

    CAS  PubMed  Google Scholar 

  • Triana MAH, Huynh MY, Garavito MF, Fox BA, Bzik DJ, Carruthers VB, Löffler M, Zimmermann BH (2012) Biochemical and molecular characterization of the pyrimidine biosynthetic enzyme dihydroorotate dehydrogenase from Toxoplasma gondii. Mol Biochem Parasitol 184:71–81

    Google Scholar 

  • Ulomskiy EN, Ivanova AV, Gorbunov EB, Esaulkova IL, Slita AV, Sinegubova EO, Voinkov EK, Drokin RA, Butorin II, Gazizullina ER, Gerasimova EL, Zarubaev VV, Rusinov VL (2020) Synthesis and biological evaluation of 6-nitro-1,2,4-triazoloazines containing polyphenol fragments possessing antioxidant and antiviral activity. Bioorg Med Chem Lett 30:127216

    CAS  PubMed  Google Scholar 

  • Uryu S, Tokuhiro S, Murasugi T, Oda T (2002) A novel compound, RS-1178, specifically inhibits neuronal cell death mediated by β-amyloid-induced macrophage activation in vitro. Brain Res 946:298–306

    CAS  PubMed  Google Scholar 

  • Vazquez A, Bond EE, Levine AJ, Bond GL (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7:979–987

    CAS  PubMed  Google Scholar 

  • Vidler LR, Brown N, Knapp S, Hoelder S (2012) Druggability analysis and structural classification of bromodomain acetyl-lysine binding sites. J Med Chem 55:7346–7359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vidler LR, Filippakopoulos P, Fedorov O, Picaud S, Martin S, Tomsett M, Woodward H, Brown N, Knapp S, Hoelder S (2013) Discovery of novel small-molecule inhibitors of BRD4 using structure-based virtual screening. J Med Chem 56:8073–8088

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Hesek D, Lee M, Lastochkin E, Oliver AG, Chang M, Mobashery S (2016) The natural product essramycin and three of its isomers are devoid of antibacterial activity. J Nat Prod 79:1219–1222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Lee M, Peng Z, Blazquez B, Lastochkin E, Kumarasiri M, Bouley R, Chang M, Mobashery S (2015) Synthesis and evaluation of 1,2,4-triazolo[1,5-a]pyrimidines as antibacterial agents against Enterococcus faecium. J Med Chem 58:4194–4203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Tian Y, Chen W, Liu H, Zhan P, Li D, Liu H, De Clercq E, Pannecouque C, Liu X (2014) Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 2: discovery of novel [1,2,4]triazolo[1,5-a]pyrimidines using a structure-guided core-refining approach. Eur J Med Chem 85:293–303

    CAS  PubMed  Google Scholar 

  • Wang S, Zhao LJ, Zheng YC, Shen DD, Miao EF, Qiao XP, Zhao LJ, Liu Y, Huang R, Yu B, Liu HM (2017) Design, synthesis and biological evaluation of [1,2,4]triazolo[1,5-a]pyrimidines as potent lysine specific demethylase 1 (LSD1/KDM1A) inhibitors. Eur J Med Chem 125:940–951

    CAS  PubMed  Google Scholar 

  • Wang X, Jiang X (2012) Mdm2 and MdmX partner to regulate p53. FEBS Lett 586:1390–1396

    CAS  PubMed  Google Scholar 

  • Wang-Gillam A, Arnold SM, Bukowski RM, Rothenberg ML, Cooper W, Wang KK, Gauthier E, Lockhart AC (2012) A phase I dose escalation study of TTI-237 in patients with advanced malignant solid tumors. Invest N. Drugs 30:266–272

    CAS  Google Scholar 

  • Watanabe I, Okumura Y, Nagashima K, Kofune M, Ohkubo K, Mano H, Sonoda K, Kasamaki Y, Hirayama A (2012) Effects of the antianginal drug Trapidil on atrioventricular conduction disturbances during acute myocardial ischemia. Int Heart J 53:187–192

    CAS  PubMed  Google Scholar 

  • Werbovetz KA (2002) Tubulin as an antiprotozoal drug target. Mini-Rev Med Chem 2:519–529

    CAS  PubMed  Google Scholar 

  • Wiśniewska J, Fandzloch M, Łakomska I (2019) The reduction of ruthenium (III) complexes with triazolopyrimidine ligands by ascorbic acid and mechanistic insight into their action in anticancer therapy. Inorg Chim Acta 484:305–310

    Google Scholar 

  • Wong KK, Engelman JA, Cantley LC (2010) Targeting the PI3K signaling pathway in cancer. Curr Opin Genet Dev 20:87–90

    CAS  PubMed  Google Scholar 

  • Wu JZ, Yao N, Walker M, Hong Z (2005) Recent advances in discovery and development of promising therapeutics against hepatitis C virus NS5B RNA-dependent RNA polymerase. Mini-Rev Med Chem 5:1103–1112

    CAS  PubMed  Google Scholar 

  • Xia LL, Tang YB, Song FF, Xu L, Ji P, Wang SJ, Zhu JM, Zhang Y, Zhao GP, Wang Y, Liu TT (2016) DCTPP1 attenuates the sensitivity of human gastric cancer cells to 5-fluorouracil by up-regulating MDR1 expression epigenetically. Oncotarget 7:68623–68637

    PubMed  PubMed Central  Google Scholar 

  • Xiong Q, Lin X, Liu J, Bi L, Bao X (2012) Synthesis and bioactivities of novel 1,2,4-triazolo[1,5-a]pyrimidine derivatives containing 1,2,4-triazole-5-thione Schiff base unit. Chin J Org Chem 32:1255–1260

    CAS  Google Scholar 

  • Yamaguchi H, Hishinuma T, Endo N, Tsukamoto H, Kishikawa Y, Sato M, Murai Y, Hiratsuka M, Ito K, Okamura C, Yaegashi N, Suzuki N, Tomioka Y, Goto J (2006) Genetic variation in ABCB1 influences paclitaxel pharmacokinetics in Japanese patients with ovarian cancer. Int J Gynecol Cancer 16:979–985

    CAS  PubMed  Google Scholar 

  • Yang F, Yu LZ, Diao PC, Jian XE, Zhou MF, Jiang CS, You WW, Ma WF, Zhao PL (2019) Novel [1,2,4]triazolo[1,5-a]pyrimidines derivates as potent antitubulin agents: design, multicomponent synthesis and antiproliferative activities. Bioorg Chem 92:103260

    CAS  PubMed  Google Scholar 

  • Yang G, Liu Z, Liu J, Yang H (2000) Synthesis and properties of novel α-(1,2,4-triazolo[1,5-a]pyrimidine-2-oxyl)phosphonate derivatives. Heteroat Chem 11:313–316

    CAS  Google Scholar 

  • Yang G, Xu L, Lu A (2001) Synthesis and bioactivity of novel triazolo[1,5-a]pyrimidine derivatives. Heteroat Chem 12:491–496

    CAS  Google Scholar 

  • Yang P, Myint KZ, Tong Q, Feng R, Cao H, Almehizia AA, Alqarni MH, Wang L, Bartlow P, Gao Y, Gertsch J, Teramachi J, Kurihara N, Roodman GD, Cheng T, Xie XQ (2012) Lead discovery, chemistry optimization, and biological evaluation studies of novel biamide derivatives as CB2 receptor inverse agonists and osteoclast inhibitors. J Med Chem 55:9973–9987

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yet L (2009) Five-membered ring sysyems: with more than one N atom. In: Gribble GW, Joule J (eds) Progress in heterocyclic chemistry. Elsevier, Amsterdam, vol 21, pp 224–260

  • Yngve U, Paulsen K, Macsari I, Sundström M, Santangelo E, Linde C, Bogar K, Lake F, Besidski Y, Malmborg J, Strömberg K, Appelkvist P, Radesäter AC, Olsson F, Bergström D, Klintenberg R, Arvidsson PI (2013) Triazolopyrimidinones as γ-secretase modulators: structure-activity relationship, modulator profile, and in vivo profiling. MedChemComm 4:422–431

    CAS  Google Scholar 

  • Yu B, Shi XJ, Zheng YF, Fang Y, Zhang E, Yu DQ, Liu HM (2013) A novel [1,2,4]triazolo[1,5-a]pyrimidine-based phenyl-linked steroid dimer: synthesis and its cytotoxic activity. Eur J Med Chem 69:323–330

    CAS  PubMed  Google Scholar 

  • Yu W, Goddard C, Clearfield E, Mills C, Xiao T, Guo H, Morrey JD, Motter NE, Zhao K, Block TM, Cuconati A, Xu X (2011) Design, synthesis, and biological evaluation of triazolo-pyrimidine derivatives as novel inhibitors of Hepatitis B virus surface antigen (HBsAg) secretion. J Med Chem 54:5660–5670

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Yao Y, Cornec AS, Oukoloff K, James MJ, Koivula P, Trojanowski JQ, Smith III AB, Lee VMY, Ballatore C, Brunden KR (2018) A brain-penetrant triazolopyrimidine enhances microtubule-stability, reduces axonal dysfunction and decreases tau pathology in a mouse tauopathy model. Mol Neurodegener 13:59

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang N, Ayral-Kaloustian S, Nguyen T, Afragola J, Hernandez R, Lucas J, Gibbons J, Beyer C (2007) Synthesis and SAR of [1,2,4]triazolo[1,5-a]pyrimidines, a class of anticancer agents with a unique mechanism of tubulin inhibition. J Med Chem 50:319–327

    CAS  PubMed  Google Scholar 

  • Zhao XL, Zhao YF, Guo SC, Song HS, Wang D, Gong P (2007) Synthesis and anti-tumor activities of novel [1,2,4]triazolo[1,5-a]pyrimidines. Molecules 12:1136–1146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Schandené L, Mordvinov VA, Chatelain P, Pradier O, Goldman M, Stordeur P (2004) Trapidil inhibits monocyte CD40 expression by preventing IFN-γ-induced STAT1 S727 phosphorylation. Int Immunopharmacol 4:863–871

    CAS  PubMed  Google Scholar 

  • Zhou Z, Liu T, Zhang J, Zhan P, Liu X (2018) Influenza A virus polymerase: an attractive target for next-generation anti-influenza therapeutics. Drug Disco Today 23(3):503–518

    CAS  Google Scholar 

  • Zuniga ES, Korkegian A, Mullen S, Hembre EJ, Ornstein PL, Cortez G, Biswas K, Kumar N, Cramer J, Masquelin T, Hipskind PA, Odingo J, Parish T (2017) The synthesis and evaluation of triazolopyrimidines as anti-tubercular agents. Bioorg Med Chem 25:3922–3946

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)-Finance Code 001. EMCP thanks to Conselho Nacional de Desenvolvimento Tecnológico (CNPq) for scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Pinheiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, S., Pinheiro, E.M.C., Muri, E.M.F. et al. Biological activities of [1,2,4]triazolo[1,5-a]pyrimidines and analogs. Med Chem Res 29, 1751–1776 (2020). https://doi.org/10.1007/s00044-020-02609-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-020-02609-1

Keywords

Navigation