Skip to main content
Log in

Analysis and numerical modeling of subcooled boiling in energy systems in vertical porous channel

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Boiling phenomena are interested in many fields of engineering such as piping and cooling electronic systems. Usually, the phase change through the heat transfer process is avoided as it makes the fluid flow unstable and complex. In the current study, the effect of using porous media in the channel to control the thermo-hydraulic characteristics of the system is studied. To do this aim a steady-state one-dimensional system of equations is solved by numerical method. The gas and liquid Navier–Stokes equations coupled with energy equations are solved simultaneously. The developed method validated with a well-known benchmark problem and the comparison shows a good agreement. The results show that Sauter bubble diameter, forces on the cross-sectional area of fluid, Froude number, fluid wall forces, velocity of mixture, Reynolds number of vapor, fluid velocity, square root of Froude number divided by Weber number, base volume fraction, vapor volume portion, maximum vapor volume portion, critical vapor volume fraction decrease by an increase in Darcy forces, while mean root square of the applied force over the cross section of fluid and heat transported by thermal radiation increased by an increase in Darcy friction up to 1000. The porous media parameters have negligible effects on Eötvös number, speed of sound, liquid Reynolds number, bubble departure frequency, convection heat transfer coefficient, and critical pipe diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sedaghatkish A, Sadeghiseraji J, Jamalabadi MYA. Numerical simulation of magnetic nanofluid (MNF) film boiling on cylindrical heated magnet using phase field method. Int J Heat Mass Transf. 2020;152:119546.

    Article  CAS  Google Scholar 

  2. Asadi ON, Kadijani MH, Doranehgardc Q, Xiong MS, Shadloo LKB. Li Numerical study on the application of biodiesel and bioethanol (biomass derived fuels) in a multiple injection diesel engine. Renew Energy. 2020. https://doi.org/10.1016/j.renene.2019.11.088.

    Article  Google Scholar 

  3. Shadloo MS. Numerical simulation of compressible flows by lattice Boltzmann method. Numer Heat Transfer Part A. 2019;75(3):167–82.

    Article  Google Scholar 

  4. Almasi F, Shadloo MS, Hadjadj A, Ozbulut M, Tofighi N, Yildiz M. Numerical simulations of multi-phase electro-hydrodynamics’ flows using a simple incompressible smoothed particle hydrodynamics method. Comput Math Appl. 2019. https://doi.org/10.1016/j.camwa.2019.10.029.

    Article  Google Scholar 

  5. Hopp-Hirschler M, Shadloo MS, Nieken U. Viscous fingering phenomena in the early stage of polymer membrane formation. J Fluid Mech. 2019;864:97–140.

    Article  CAS  Google Scholar 

  6. Hopp-Hirschler M, Shadloo MS, Nieken U. A smoothed particle hydrodynamics approach for thermo-capillary flows. Comput Fluids. 2018;176:1–19.

    Article  Google Scholar 

  7. Sadeghi R, Shadloo MS, Hooman K. Numerical investigation of natural convection film boiling around elliptical tubes. Numer Heat Transf Part A Appl. 2016;70(7):707–22.

    Article  CAS  Google Scholar 

  8. Shenoy DV, Shadloo MS, Hadjadj A, Peixinho J. Direct numerical simulations of laminar and transitional flows in diverging pipes. Int J Numer Methods Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-02-2019-0111.

    Article  Google Scholar 

  9. Shadloo MS, Hadjadj A. Laminar-turbulent transition in supersonic boundary layers with surface heat transfer: a numerical study. Numer Heat Transf Part A Appl. 2017;72(1):40–53.

    Article  CAS  Google Scholar 

  10. Mendez-Gonzlez M, Shadloo MS, Hadjadj A, Ducoin A. Boundary layer transition over a concave plate caused by centrifugal instabilities. Comput Fluids. 2018;171:135–53.

    Article  Google Scholar 

  11. Piquet A, Zebiri B, Hadjadj A, Shadloo MS. A parallel high-order compressible flows solver with a domain decomposition method in the generalized curvilinear coordinates system. Int J Numer Meth Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-01-2019-0048.

    Article  Google Scholar 

  12. Mortazavi SM, Maleki A (2019) A review of solar compound parabolic collectors in water desalination systems. Int J Modell Simul. https://doi.org/10.1080/02286203.2019.1626539.

    Article  Google Scholar 

  13. Rashidi MM, Nasiri M, Shadloo MS, Yang Z. Entropy generation in a circular tube heat exchanger using nanofluids: effects of different modeling approaches. Heat Transf Eng. 2017;38(9):853–66.

    Article  CAS  Google Scholar 

  14. Nasiri H, Jamalabadi MYA, Sadeghi R, Safaei MR, Shadloo MS. A smoothed particle hydrodynamics approach for numerical simulation of nano-fluid flows: application to forced convection heat transfer over a horizontal cylinder. J Therm Anal Calorim. 2019;135:1733–41.

    Article  CAS  Google Scholar 

  15. Zhang W, Maleki A, Khajeh MG, Zhang Y, Mortazavi SM, Be-Hagh AV. ‘A novel framework for integrated energy optimization of a cement plant: an industrial case study. Sustain Energy Technol Assess. 2019;35:245–56.

    Google Scholar 

  16. Zhang W, Maleki A, Rosen MA. A heuristic-based approach for optimizing a small independent solar and wind hybrid power scheme incorporating load forecasting. J Clean Prod. 2019;241:117920.

    Article  Google Scholar 

  17. Komeilibirjandi A, Raffiee AH, Maleki A, Nazari MA, Shadloo MS. Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network. J Therm Anal Calorim. 2019;139:2679–2689. https://doi.org/10.1007/s10973-019-08838-w.

    Article  CAS  Google Scholar 

  18. Li J, Mohammadi A, Maleki A. Techno-economic analysis of new integrated system of humid air turbine, organic Rankine cycle and parabolic trough collector. J Therm Anal Calorim. 2020;139:2691–2703. https://doi.org/10.1007/s10973-019-08855-9.

  19. Tian C, Maleki A, Motie S, Yavarinasab A, Afrand M. Generation expansion planning by considering wind resource in a competitive environment. J Therm Anal Calorim. 2019;1–11. https://doi.org/10.1007/s10973-019-09139-y.

  20. Shahrestani MI, Maleki A, Shadloo MS, Tlili I. Numerical investigation of forced convective heat transfer and performance evaluation criterion of Al2O3/water nanofluid flow inside an axisymmetric microchannel. Symmetry. 2020;12(1):120.

    Article  CAS  Google Scholar 

  21. Goshayeshi HR, Goodarzi M, Safaei MR, Dahari M. Experimental study on the effect of inclination angle on heat transfer enhancement of a ferrofluid in a closed loop oscillating heat pipe under Darcy force. Exp Thermal Fluid Sci. 2016;74:265–70.

    Article  CAS  Google Scholar 

  22. Goshayeshi HR, Safaei MR, Goodarzi M, Dahari M. Particle size and type effects on heat transfer enhancement of Ferro-nanofluids in a pulsating heat pipe. Powder Technol. 2016;301:1218–26.

    Article  CAS  Google Scholar 

  23. Hassan M, Sadri R, Ahmadi G, Dahari M, Kazi S, Safaei M, et al. Numerical study of entropy generation in a flowing nanofluid used in micro-and minichannels. Entropy. 2013;15(1):144–55.

    Article  CAS  Google Scholar 

  24. Safaei MR, Karimipour A, Abdollahi A, Nguyen TK. The investigation of thermal radiation and free convection heat transfer mechanisms of nanofluid inside a shallow cavity by lattice Boltzmann method. Physica A. 2018;509:515–35.

    Article  CAS  Google Scholar 

  25. Hosseini SM, Safaei MR, Goodarzi M, Alrashed AAAA, Nguyen TK. New temperature, interfacial shell dependent dimensionless model for thermal conductivity of nanofluids. Int J Heat Mass Transf. 2017;114:207–10.

    Article  CAS  Google Scholar 

  26. Akbari OA, Toghraie D, Karimipour A. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular. Adv Mech Eng. 2015;7(11):1687814015618155.

    Article  CAS  Google Scholar 

  27. Karimipour A. New correlation for Nusselt number of nanofluid with Ag/Al2O3/Cu nanoparticles in a microchannel considering slip velocity and temperature jump by using lattice Boltzmann method. Int J Therm Sci. 2015;91:146–56.

    Article  CAS  Google Scholar 

  28. Bahrami M, Akbari M, Karimipour A, Afrand M. An experimental study on rheological behavior of hybrid nanofluids made of iron and copper oxide in a binary mixture of water and ethylene glycol: non-Newtonian behavior. Exp Therm Fluid Sci. 2016;79:231–7.

    Article  CAS  Google Scholar 

  29. Karimipour A, Nezhad AH, D’Orazio A, Shirani E. The effects of inclination angle and Prandtl number on the mixed convection in the inclined lid driven cavity using lattice Boltzmann method. J Theor Appl Mech. 2013;51(2):447–62.

    Google Scholar 

  30. Zeitoun O, Shoukri M. Axial void fraction profile in low pressure subcooled flow boiling. Int J Heat Mass Transf. 1997;40:869–79.

    Article  CAS  Google Scholar 

  31. Jamalabadi MYA. EMHD effects on subcooled boiling in a Vertical annulus. Multiph Sci Technol. 2018;30:4.

    Article  Google Scholar 

  32. Jamalabadi MYA, Ghasemi M, Alamian R, Wongwises S, Afrand M, Shadloo M. Modeling of subcooled flow boiling with nanoparticles under the influence of a magnetic field. Symmetry. 2019;11:1275.

    Article  CAS  Google Scholar 

  33. Jamalabadi MYA. Magnetohydrodynamic and nanoparticle effects in vertical annular subcooled flow boiling. Symmetry. 2019;11(6):810.

    Article  CAS  Google Scholar 

  34. Jamalabadi MYA. Electromagnetohydrodynamic two-phase flow-induced vibrations in vertical heated upward flow. J Comput Des Eng. 2019;6:92–104.

    Google Scholar 

  35. Sadeghi R, Shadloo M, Jamalabadi MYA, Karimipour A. A three-dimensional lattice Boltzmann model for numerical investigation of bubble growth in pool boiling. Int Commun Heat Mass Transf. 2016;79:58–66.

    Article  Google Scholar 

  36. Rashidi S, Hormozi F, Sarafraz MM. Fundamental and subphenomena of boiling heat transfer. J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09468-3.

  37. Ahangar Zonouzi S, Khodabandeh R, Safarzadeh H, et al. Experimental study of the subcooled flow boiling heat transfer of magnetic nanofluid in a vertical tube under magnetic field. J Therm Anal Calorim. 2020;140:2805–16.

    Article  CAS  Google Scholar 

  38. Yeoh GH, Vahaji S, Cheung SCP, Tu JY. Modeling subcooled flow boiling in vertical channels at low pressures—part 2: evaluation of mechanistic approach. Int J Heat Mass Transf. 2014;75:754–68.

    Article  Google Scholar 

  39. Gholami H, Kouhikamali R, Sharifi N. Study of drying process a vertical porous channel by developing a numeric solver in OpenFOAM. Int J Therm Sci. 2019;146:106072.

    Article  Google Scholar 

  40. Lee TH, Park GC, Lee DJ. Local flow characteristics of subcooled boiling flow of water in a vertical concentric annulus. Int J Multiph Flow. 2002;28(8):1351–68.

    Article  CAS  Google Scholar 

  41. Sarwar MS, Jeong YH, Chang SH. Subcooled flow boiling CHF enhancement with porous surface coatings. Int J Heat Mass Transf. 2007;50(17–18):3649–57.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author acknowledges the help of Dr. Arman Haghighi for his fruitful discussion and his help for utilizing his code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yaghoub Abdollahzadeh Jamalabadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdollahzadeh Jamalabadi, M.Y. Analysis and numerical modeling of subcooled boiling in energy systems in vertical porous channel. J Therm Anal Calorim 144, 1715–1725 (2021). https://doi.org/10.1007/s10973-020-10073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10073-7

Keywords

Navigation