Skip to main content
Log in

Characterization of poly(ethylene oxide) modified with different phenyl hepta isobutyl polyhedral oligomeric silsesquioxanes

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Poly(ethylene oxide)/polyhedral oligomeric silsesquioxanes (PEO/POSSs) composites were prepared by the melting method. The investigation of their thermal characteristics was performed by the differential scanning calorimetry (DSC), while the investigation of their thermal stability was performed by the non-isothermal thermogravimetry. The glass transition temperatures, the crystallinity and the melting temperature of PEO decrease with the addition of POSS nanoparticles. FTIR analysis also confirms the decrease in PEO’s crystallinity with the addition of POSS. POSS nanoparticles shift the beginning of PEO decomposition toward lower temperatures, while they do not have a significant effect on the maximum decomposition temperature, maximum decomposition rate and the residual mass. Scanning electron microscopy analysis seems to indicate that a poor dispersion of POSS nanoparticles causes this worsening in the thermal behavior of the prepared composites. The non-isothermal decomposition of PEO/POSSs samples is more complex compared to pure PEO. POSS nanoparticles influence the beginning of the PEO’s decomposition process and its activation energy, while the kinetic model of PEO’s thermal decomposition process remains unchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Quartatone E, Mustareli P, Magistris P. PEO-based composite polymer electrolytes. Solid State Ion. 1998;110:1–14.

    Google Scholar 

  2. Chen H-W, Chang F-C. The novel polymer electrolyte nanocomposite composed of poly(ethylene oxide), lithium triflate and mineral clay. Polymer. 2001;42:9763–9.

    CAS  Google Scholar 

  3. Sandi G, Carrado KA, Joachin H, Lu W, Prakash J. Polymer nanocomposites for lithium battery applications. J Power Sources. 2003;119:492–6.

    Google Scholar 

  4. Liao C-S, Ye W-B. Enhanced ionic conductivity in poly(ethylene oxyde)/layered double hydroxyde nanocomposite electrolytes. J Polym Res. 2003;10:241–6.

    CAS  Google Scholar 

  5. Manoratne CH, Rajapakse RMG, Dissanayake MAKL. Ionic conductivity of poly (ethylene oxide)(PEO)–montmorillonite (MMT) nanocomposites prepared by intercalation from aqueous medium. Int J Electrochem Sci. 2006;1:32–46.

    CAS  Google Scholar 

  6. Ilia G, Fagadar-Cosma E, Iliescu S, Macarie L, Pleşu N, Fagadar-Cosma G, Popa A. Solid polymer electrolytes for batteries. Timisoara: Editura Mirton; 2013.

    Google Scholar 

  7. Zhignag X, He D, Xie X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J Mater Chem. 2015;A3:19218–53.

    Google Scholar 

  8. Wang M, Braun HG, Meyer E. Crystalline structures in ultrathin poly(ethylene oxide)/poly(methylmethacrylate) blend films. Polymer. 2003;44:5015–21.

    CAS  Google Scholar 

  9. Yap YL, You AH, Teo LL. Preparation and characterization of studies of PMMA–PEO-blend solid polymer electrolytes with SiO2 filler and plasticizer for lithium ion battery. Ionics. 2019;25:3087–98.

    CAS  Google Scholar 

  10. Patra S, Thakur P, Soman B, Puthirath AB, Ajayan PM, Mogurampelly S, Chethan VK, Narayanan TN. Mechanistic insight into improved Li ion conductivity of solid polymer electrolytes. RSC Adv. 2019;9:38646–57.

    CAS  Google Scholar 

  11. Jacob MME, Hackett E, Giannelis EP. From nanocomposites to nanogel polymer electrolytes. J Mater Chem. 2003;13:1–5.

    CAS  Google Scholar 

  12. Agrawal RC, Pandey GP. Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys. 2008;41:1–18.

    Google Scholar 

  13. Ahmed TO, Akusu PO, Ismaila A, Maryam A. Morphology and transport properties of polyethylene oxyde (PEO)-based nanocomposite polymer electrolytes. Int Res J Pure Appl Chem. 2014;4:170–80.

    Google Scholar 

  14. Erceg M, Jozić D, Banovac I, Perinović S, Bernstorff S. Preparation and characterization of melt intercalated poly(ethylene oxide)/lithium montmorillonite nanocomposites. Thermochim Acta. 2014;579:86–92.

    CAS  Google Scholar 

  15. Erceg M, Krešić I, Jakić M, Andričić B. Kinetic analysis poly(ethylene oxide)/lithium montmorillonite nanocomposites. J Therm Anal Calorim. 2017;127:789–97.

    CAS  Google Scholar 

  16. Blanco I. The rediscovery of POSS: a molecule rather than a filler. Polymers. 2018;10(8):904.

    PubMed Central  Google Scholar 

  17. Li S, Simon GP, Matisons JG. The effect of incorporation of POSS units on polymer blend compatibility. J Appl Polym Sci. 2010;115:1153–9.

    CAS  Google Scholar 

  18. Blanco I, Bottino FA. The influence of the nature of POSSs cage periphery on the thermal stability of a series of new bridged POSS/PS nanocomposites. Polym Degrad Stab. 2015;121:180–6.

    CAS  Google Scholar 

  19. Blanco I, Abate L, Bottino FA, Cicala G, Latteri A. Dumbbell-shaped polyhedral oligomeric silsesquzioxanes/polystyrene nanocomposites. J Compos Mater. 2015;49:2509–17.

    CAS  Google Scholar 

  20. Ueda K, Tanaka K, Chujo Y. Synthesis of POSS derivates having dual types of alkyl substituents and their application as a molecular filler for low-refractive and high durable materials. Bull Chem Soc Jpn. 2017;90:205–9.

    CAS  Google Scholar 

  21. Fina A, Tabuani D, Carniato F, Frache A, Boccaleri E, Camino G. Polyhedral oligomeric silsesquioxanes (POSS) thermal decomposition. Thermochim Acta. 2006;440:36–42.

    CAS  Google Scholar 

  22. Mu J, Liu Y, Zheng S. Inorganic–organic interpenetrationg polymer networks involving polyhedral oligomeric silsesquioxanes and poly(ethylene oxide). Polymer. 2007;48:5557–68.

    Google Scholar 

  23. Gao KW, Jiang X, Hoffman ZJ. Optimizing the monomer structure of polyhedral oligomeric silsesquioxane for ion transport in hybrid organic-inorganic block copolymers. J Polym Sci. 2020;58:363–71.

    CAS  Google Scholar 

  24. Huang K-W, Tsai L-W, Kuo S-W. Influence of octakis-functionalized polyhedral oligomeric silsesquioxanes on the physical properties of their nanocomposites. Polymer. 2009;50:4876–87.

    CAS  Google Scholar 

  25. Lee JY, Fu GC. Room-temperature Hiyama cross-couplings of arylsilanes with alkyl bromides and iodides. J Am Chem Soc. 2003;125(19):5616–7.

    CAS  PubMed  Google Scholar 

  26. Murata M, Ishikura M, Nagata M, Watanabe S, Masuda Y. Rhodium (I)-catalyzed silylation of aryl halides with triethoxysilane: practical synthetic route to aryltriethoxysilanes. Org Lett. 2002;4(11):1843–5.

    CAS  PubMed  Google Scholar 

  27. Weber WP. Silicon reagents for organic synthesis. New York: Springer; 1983.

    Google Scholar 

  28. Manoso AS, Ahn C, Soheili A, Handy CJ, Correia R, Seganish WM, Deshong P. Improved synthesis of aryltrialkoxysilanes via treatment of aryl grignard or lithium reagents with tetraalkyl orthosilicates. J Org Chem. 2004;69(24):8305–14.

    CAS  PubMed  Google Scholar 

  29. Lichtenhan JD, Schwab JJ, Reinerth W, Carr MJ, An YZ, Feher FJ. Process for the formation of polyhedral oligomeric silsesquioxanes. US patent WO 01/10871 A1.

  30. ISO 11357-2: 2009 Plastics—differential scanning calorimetry (DSC)—part 2: determination of glass transition temperature.

  31. ISO 11357-3: 2009 Plastics—differential scanning calorimetry (DSC)—part 3: determination of temperature and enthalpy of melting and crystallization.

  32. Rocco AM, Pereira RP, Felisberti MI. Miscibility, crystallinity and morphological behavior of binary blends of poly(ethylene oxide) and poly(methyl vinyl ether–maleic acid). Polymer. 2001;42:5199–205.

    CAS  Google Scholar 

  33. Vyazovkin S, Burnham AK, Criado JM, Perez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011;520:1–19.

    CAS  Google Scholar 

  34. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Nat Bur Stand. 1966;70A:487–523.

    Google Scholar 

  35. Ozawa T. A new method of analysing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–9.

    CAS  Google Scholar 

  36. Friedman HL. Kinetic of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic resin. J Polym Sci Part C. 1963;6:183–95.

    Google Scholar 

  37. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    CAS  Google Scholar 

  38. Akahira T, Sunose T. Method of determining activation deterioration constant of electrical insulating materials. Res Report Chiba Inst Technol Sci Technol. 1971;16:22–31.

    Google Scholar 

  39. Vyazovkin S. Advanced isoconversional method. J Therm Anal. 1997;49:1991–9.

    Google Scholar 

  40. Li CR, Tang TB. A new method for analysing non-isothermal thermoanalytical data from solid-state reactions. Thermochim Acta. 1999;325:43–6.

    CAS  Google Scholar 

  41. Vyazovkin S. A unified approach to kinetic processing in nonisothermal data. Int J Chem Kinet. 1996;28:95–101.

    CAS  Google Scholar 

  42. Málek J. The kinetic analysis of nonisothermal data. Thermochim Acta. 1992;200:257–69.

    Google Scholar 

  43. Criado JM, Málek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147:377–85.

    CAS  Google Scholar 

  44. Lesnikovich AI, Levchik SV. A method of finding invariant values of kinetic parameters. J Therm Anal. 1983;27:89–93.

    CAS  Google Scholar 

  45. Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2001;115:1780–91.

    Google Scholar 

  46. Rotaru A, Goa M, Rotaru P. Computational thermal and kinetic analysis. Software for non-isothermal kinetics by standard procedure. J Therm Anal Calorim. 2008;94:367–71.

    CAS  Google Scholar 

  47. Rotaru A, Goa M, Rotaru P. Computational thermal and kinetic analysis. Complete standard procedure to evaluate the kinetic triplet from non-isothermal data. J Therm Anal Calorim. 2009;97:421–6.

    CAS  Google Scholar 

  48. Pielichowski K, Flejtuch K. Non-oxidative thermal decomposition of poly(ethylene oxide): kinetic and thermoanalytical study. J Anal Appl Pyrolysis. 2005;73(1):131–8.

    CAS  Google Scholar 

  49. Blanco I, Abate L, Bottino FA, Bottino P. Hepta isobutyl polyhedral oligomeric silsesquioxanes (hib-POSS), a thermal decomposition study. J Therm Anal Calorim. 2011;108:807–10.

    Google Scholar 

  50. De Sainte Claire P. Decomposition of PEO in the solid state: a theoretical kinetic model. Macromolecules. 2009;42(10):3469–82.

    Google Scholar 

  51. Sim LH, Gan SN, Chan CH, Yahya R. ATR-FTIR studies on ion interaction of lithium perchlorate in polyacrylate/poly(ethylene oxide) blends. Spectrochim Acta, Part A. 2010;76:287–92.

    CAS  Google Scholar 

  52. Netzsch Thermokinetics Software Manual. Selb: Netzsch Gerätebau GmbH; 2014.

  53. Erceg M, Krešić I, Stipanelov Vrandečić N, Jakić M. Different approaches to the kinetic analysis of thermal degradation of poly(ethylene oxide). J Therm Anal Calorim. 2018;131:325–34.

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Dr. Giulia Ognibene of the University of Catania for performing SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nataša Stipanelov Vrandečić.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stipanelov Vrandečić, N., Erceg, M., Andričić, B. et al. Characterization of poly(ethylene oxide) modified with different phenyl hepta isobutyl polyhedral oligomeric silsesquioxanes. J Therm Anal Calorim 142, 1863–1875 (2020). https://doi.org/10.1007/s10973-020-10076-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10076-4

Keywords

Navigation