Skip to main content
Log in

Effect of iron scrap additives in stearic acid as PCM for thermal energy storage system

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal energy storage (TES) system is used to store the heat energy for longer periods and retrieve the heat energy as and when required. Experiments were conducted on the TES system with stearic acid (SA) as phase change materials (PCM) with and without iron scrap additives (IS) filled in spherical capsules. The PCM was filled in high-density polyethylene (HDPE) capsules of spherical shape. The process of charging, discharging, and the heat energy retrieved for the aforementioned PCMs were investigated and compared with various heat sources. The TES tank performance was studied with a variable/constant heat source at different flow rates, i.e. 2, 4, and 6 LPM. The results showed that the TES tank is charged to 70 °C in 204 min with 6 LPM flow rate, whereas for 2 LPM flow rate, the TES tank was charged to 70 °C in 254 min for the variable heat source. In the case of a constant heat source, to reach 70 °C, it took 54 min, 43 min, and 33 min for 2 LPM, 4 LPM, and 6 LPM flow rates, respectively. The total heat capacity of the TES tank at 70 °C was around 10,400 kJ. The output hot water at an average of 45 °C was found to be around 164 litres which means that the heat energy recovered from the TES tank was around 32%. The system with IS along PCM filled in spherical capsules was able to give 25% of hot water in extra than the same capacity of the sensible heat storage system. The results obtained reveal that heating and cooling processes were taking place at a faster rate of 13% with the addition of IS particles to the PCM when compared to pure PCM in the spherical capsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

TES:

Thermal energy storage

SHS:

Sensible heat energy storage system

PCM:

Phase change material

LHS:

Latent heat energy system

HDPE:

High-density polyethylene

SA:

Stearic acid

CPCM:

Composite phase change materials

SNOE:

Silver nano-based organic ester

HTF:

Heat transmission fluid

RTD:

Resistance temperature detector

EG:

Expanded graphite

LPM:

Litres/min

DSC:

Differential scanning calorimetry

m c :

Mass of HTF during charging

TCpc :

Specific heat of HTF during charging

T ci :

Initial Temperature of HTF during charging

T co :

Final Temperature of HTF during charging

m d :

Mass of HTF during discharging

C pd :

Specific heat of HTF during discharging

T di :

Initial temperature of HTF during charging

T do :

Final temperature of HTF during charging

T o :

Atm. temperature

T pcm :

PCM melting point temperature

m p :

Mass of PCM used

C pp :

Specific heat of PCM

T pi :

Initial temperature of PCM

T po :

Final temperature of PCM

h sf :

Latent heat of PCM

References

  1. Adref KT, Eames IW. Experiments on charging and discharging of spherical thermal (ice) storage elements. Int J Energy Res. 2002;26(11):949–64. https://doi.org/10.1002/er.816.

    Article  Google Scholar 

  2. Assis E, Katsman L, Ziskind G, Letan R. Numerical and experimental study of melting in a spherical shell. Int J Heat Mass Transf. 2007;50(9–10):1790–804. https://doi.org/10.1016/j.ijheatmasstransfer.2006.10.007.

    Article  Google Scholar 

  3. Barba A, Spiga M. Discharge mode for encapsulated PCMs in storage tanks. Sol Energy. 2003;74(2):141–8. https://doi.org/10.1016/S0038-092X(03)00117-8.

    Article  CAS  Google Scholar 

  4. Chang SJ, Wi S, Jeong S-G, Kim S. Analysis on phase transition range of the pure and mixed phase change materials (PCM) using a thermostatic chamber test and differentiation. J Therm Anal Calorim. 2018;131(2):1999–2004. https://doi.org/10.1007/s10973-017-6603-y.

    Article  CAS  Google Scholar 

  5. Keumnam C, Choi SH. Thermal characteristics of paraffin in a spherical capsule during freezing and melting processes. Int J Heat Mass Transfer. 2000;43(17):3183–96.

    Article  Google Scholar 

  6. Chow LC, Zhong JK, Beam JE. Thermal conductivity enhancement for phase change storage media. Int Commun Heat Mass Transfer. 1996;23(1):91–100. https://doi.org/10.1016/0735-1933(95)00087-9.

    Article  CAS  Google Scholar 

  7. Ettouney H, Hisham E-D, Amani A-A. Heat transfer during phase change of paraffin wax stored in spherical shells. J Solar Energy Eng. 2005;127(3):357–65. https://doi.org/10.1115/1.1850487.

    Article  CAS  Google Scholar 

  8. Xiaowei F, Zhang Y, Kong W, Chen X, Wang J, Zhou C, Lei J. Synthesis and properties of bulk-biodegradable phase change materials based on polyethylene glycol for thermal energy storage. J Therm Anal Calorim. 2017;128(2):643–51. https://doi.org/10.1007/s10973-016-5959-8.

    Article  CAS  Google Scholar 

  9. Hou P, Mao J, Liu R, Chen F, Li Y, Chang X. Improvement in thermodynamic characteristics of sodium acetate trihydrate composite phase change material with expanded graphite. J Therm Anal Calorim. 2019;137(4):1295–306. https://doi.org/10.1007/s10973-019-08061-7(0123456789(),-volV)(0123456789,-().volV).

    Article  CAS  Google Scholar 

  10. Jegadheeswaran S, Pohekar SD, Kousksou T. Exergy based performance evaluation of latent heat thermal storage system: a review. Renew Sustain Energy Rev. 2010;14(9):2580–95. https://doi.org/10.1016/j.rser.2010.07.051.

    Article  CAS  Google Scholar 

  11. Li Y, Yan H, Wang Q, Wang H, Huang Y. Structure and thermal properties of decanoic acid/expanded graphite composite phase change materials. J Therm Anal Calorim. 2017;128(3):1313–26. https://doi.org/10.1007/s10973-016-6068-4.

    Article  CAS  Google Scholar 

  12. Lovera-Copa JA, Svetlana U, Nicole R, Islaman V, Franklin RM. Design of phase change materials based on salt hydrates for thermal energy storage in a range of 4–40°C. J Therm Anal Calorim. 2019;5:1–10. https://doi.org/10.1007/s10973-019-08655-1(0123456789(),-volV)(0123456789,-().volV).

    Article  Google Scholar 

  13. Manikandan S, Selvam C, Pavan SPP, Ravita L, Kaushik DZSC, Ronggui Y. A novel technique to enhance thermal performance of a thermoelectric cooler using phase-change materials. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08353-y(0123456789(),-vol(V0)123456789().,-volV).

    Article  Google Scholar 

  14. Manoj Kumar P, Mylsamy K. Experimental investigation of solar water heater integrated with a nanocomposite phase change material. J Therm Anal Calorim. 2019;136(1):121–32. https://doi.org/10.1007/s10973-018-7937-9.

    Article  CAS  Google Scholar 

  15. Nallusamy N, Sampath S, Velraj R. Study on performance of a packed bed latent heat thermal energy storage unit integrated with solar water heating system. J Zhejiang Univ Sci A. 2006;7(8):1422–30. https://doi.org/10.1631/jzus.2006.A1422.

    Article  Google Scholar 

  16. Parameshwaran R, Jayavel R, Kalaiselvam S. Study on thermal properties of organic ester phase-change material embedded with silver nanoparticles. J Therm Anal Calorim. 2013;114(2):845–58. https://doi.org/10.1007/s10973-013-3064-9.

    Article  CAS  Google Scholar 

  17. Radhakrishnan N, Shijo T, Sobhan CB. Characterization of thermophysical properties of nano-enhanced organic phase change materials using T-history method. J Therm Anal Calorim. 2019;5:1–14. https://doi.org/10.1007/s10973-019-08976-1.

    Article  CAS  Google Scholar 

  18. Meenakshi Reddy R, Nallusamy N, Hariprasad T, Reddy KH, Reddy GR. Solar energy based thermal energy storage system using phase change materials. Int J Renew Energy Technol. 2011;3(1):11–23. https://doi.org/10.1504/IJRET.2012.043905.

    Article  Google Scholar 

  19. Saleel C, Ahamed M, Abdul M, Salem A. Coconut oil as phase change material to maintain thermal comfort in passenger vehicles. J Therm Anal Calorim. 2019;136(2):629–36. https://doi.org/10.1007/s10973-018-7676-y.

    Article  CAS  Google Scholar 

  20. Saydam V, Duan X. Dispersing different nanoparticles in paraffin wax as enhanced phase change materials. J Therm Anal Calorim. 2019;135(2):1135–44. https://doi.org/10.1007/s10973-018-7484-4(0123456789(),-volV).

    Article  CAS  Google Scholar 

  21. Selvaraj V, Morri B, Nair LM, Krishnan H. Experimental investigation on the thermophysical properties of beryllium oxide-based nanofluid and nano-enhanced phase change material. J Therm Anal Calorim. 2019;137(5):1527–36. https://doi.org/10.1007/s10973-019-08042-w(0123456789(),-volV)(0123456789().,-volV).

    Article  CAS  Google Scholar 

  22. Shringi V, Surendra K, Panwar NL. Experimental investigation of drying of garlic clove in solar dryer using phase change material as energy storage. J Therm Anal Calorim. 2014;118(1):533–9. https://doi.org/10.1007/s10973-014-3991-0.

    Article  CAS  Google Scholar 

  23. Tie J, Liu X, Tie S, Zhang J, Jiang S, Tao R, Huang X. Packing and properties of composite phase change energy storage materials based on SiC nanowires and Na2SO410H2O. J Therm Anal Calorim. 2020;139(2):855–62. https://doi.org/10.1007/s10973-019-08473-5(0123456789(),-volV)(0123456789,-().volV).

    Article  CAS  Google Scholar 

  24. Wang J, Ouyang Y, Chen G. Experimental study on charging processes of a cylindrical heat storage capsule employing multiple-phase-change materials. Int J Energy Res. 2001;25(5):439–47. https://doi.org/10.1002/er.695.

    Article  CAS  Google Scholar 

  25. Wei S, Duan Z, Xia Y, Huang C, Ji R, Zhang H, Fen X, Sun L, Sun Y. Preparation and thermal performances of microencapsulated phase change materials with a nano-Al2O3-doped shell. J Therm Anal Calorim. 2019;138(1):233–41. https://doi.org/10.1007/s10973-019-08097-9(0123456789(),-volV)(0123456789,-().volV).

    Article  CAS  Google Scholar 

  26. Bo W, Weixiao F, Kong B, Kai H, Zhou C, Lei J. Preparation and characterization of stearic acid/polyurethane composites as dual phase change material for thermal energy storage. J Therm Anal Calorim. 2018;132(2):907–17. https://doi.org/10.1007/s10973-018-6977-5.

    Article  CAS  Google Scholar 

  27. Shuying W, Ma X, Peng D, Bi Y. The phase change property of lauric acid confined in carbon nanotubes as nano-encapsulated phase change materials. J Therm Anal Calorim. 2019;136(6):2353–61. https://doi.org/10.1007/s10973-018-7906-3(0123456789(),-volV)(0123456789().,-volV).

    Article  Google Scholar 

  28. Wu SY, Wang H, Xiao S, Zhu DS. An investigation of melting/freezing characteristics of nanoparticle-enhanced phase change materials. J Therm Anal Calorim. 2012;110(3):1127–31. https://doi.org/10.1007/s10973-011-2080-x.

    Article  CAS  Google Scholar 

  29. Zhao L, Xing Y, Liu X, Luo Y. Thermal performance of sodium acetate trihydrate based composite phase change material for thermal energy storage. Appl Therm Eng. 2018;143:172–81. https://doi.org/10.1016/j.applthermaleng.2018.07.094.

    Article  CAS  Google Scholar 

  30. Zhou W, Wei J, Zhu J, Li K, Cheng X. Effect of Dy2O3 on thermal properties of adipic acid (AA) as phase-change materials. J Therm Anal Calorim. 2019;138(5):2999–3005. https://doi.org/10.1007/s10973-019-08315-4(012.

    Article  CAS  Google Scholar 

  31. Arul Kumar R, Ganesh Babu B, Mohanraj M. Thermodynamic performance of forced convection solar air heaters using pin–fin absorber plate packed with latent heat storage materials. J Therm Anal Calorim. 2016;126:1657–78. https://doi.org/10.1007/s10973-016-5665-6.

    Article  CAS  Google Scholar 

  32. Li TX, Ju-Hyuk L, Ru ZW, Yong TK. Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes. Energy. 2013;55:752–61. https://doi.org/10.1016/j.energy.2013.04.010.

    Article  CAS  Google Scholar 

  33. Prabakaran R, Kumar JP, Lal DM, Selvam C, Harish S. Constrained melting of graphene-based phase change nanocomposites inside a sphere. J Therm Anal Calorim. 2020;139(2):941–52. https://doi.org/10.1007/s10973-019-08458-4(0123456789().,-volV)(0123456789,-().volV).

    Article  CAS  Google Scholar 

  34. Ye W-B. Enhanced latent heat thermal energy storage in the double tubes using fins. J Therm Anal Calorim. 2017;128(1):533–40. https://doi.org/10.1007/s10973-016-5870-3.

    Article  CAS  Google Scholar 

  35. Prabakaran R, Sidney S, Lal DM, Selvam C, Harish S. Solidification of graphene-assisted phase change nanocomposites inside a sphere for cold storage applications. Energies. 2019;12(18):3473. https://doi.org/10.3390/en12183473.

    Article  CAS  Google Scholar 

  36. Dhaidan NS, Khodadadi JM. Melting and convection of phase change materials in different shape containers: a review. Renew Sustain Energy Rev. 2015;43:449–77. https://doi.org/10.1016/j.rser.2014.11.017.

    Article  CAS  Google Scholar 

  37. Sidney S, Dhasan ML, Harish S. Experimental investigation of freezing and melting characteristics of graphene-based phase change nanocomposite for cold thermal energy storage applications. Appl Sci. 2019;9(6):1–13. https://doi.org/10.3390/app9061099.

    Article  CAS  Google Scholar 

  38. Kothandaraman CP. Heat and mass transfer data book. London: New Age International; 2004.

    Google Scholar 

  39. Meenakshi RR, Nallusamy N, Hemachandra RK. The effect of PCM capsule material on the thermal energy storage system performance. Renew Energy. 2014;20:1–6. https://doi.org/10.1155/2014/529280.

    Article  CAS  Google Scholar 

  40. Moffat RJ. Using uncertainty analysis in the planning of an experiment. ASME J Fluids Eng. 1985;107:173–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hariprasad Tarigond.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarigond, H., Reddy, R.M., Maheswari, C.U. et al. Effect of iron scrap additives in stearic acid as PCM for thermal energy storage system. J Therm Anal Calorim 141, 2497–2510 (2020). https://doi.org/10.1007/s10973-020-10117-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10117-y

Keywords

Navigation