Skip to main content
Log in

Maximum temperature analysis in a Li-ion battery pack cooled by different fluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The use of Li-ion battery in electric vehicles is becoming extensive in the modern-day world owing to their high energy density and longer life. But there is a concern of proper thermal management to have consistent performance. Therefore, proper cooling mechanism to have a good life and reliability on the battery system is necessary. The main objective of this analysis is to assess the maximum temperature that causes thermal runaway when the battery pack is cooled by several fluids. Five categories of coolants are passed over the heat-generating battery pack to extract the heat and keep the temperature in the limit. Different kinds of gases, conventional oils, thermal oils, nanofluids, and liquid metals are adopted as coolants in each category. This analysis is a novel study which considers different categories of coolant and conjugate heat transfer condition at the battery pack and coolant interface. In each group of coolant, five types of fluids are selected and analyzed to obtain the least maximum temperature of battery. The flow Reynolds number (Re), heat generation (Qgen), and conductivity ratio (Cr) are other parameters considered for the analysis. The Nusselt number for air and water as coolant with increase in Re is studied separately at the end. The maximum temperature is found to increase with Qgen and decrease for Re and Cr. Thermal oils, nanofluids, and liquid metals are found to provide maximum temperature in the same range of 0.62 to 0.54. At the same time, gases have nearly the same effect at different values of Re and Cr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Cr:

Conductivity ratio

L :

Length of the battery cell (m)

k :

Thermal conductivity (W m−1 k−1)

q‴:

Volumetric heat generation (W m−3)

Q gen :

Dimensionless volumetric heat generation

Pr:

Prandtl number

Re:

Reynolds number

T* :

Temperature (°C)

T :

Non-dimensional temperature

u :

Velocity along the axial direction (m s−1)

U :

Non-dimensional velocity along the axial direction

u :

Free stream velocity (m s−1)

v :

Velocity along the transverse direction (m s−1)

V :

Non-dimensional velocity along the transverse direction

w :

Half-width (m)

W s :

Non-dimensional width

Nuavg :

Average Nusselt number

α :

Thermal diffusivity of fluid (m2 s−1)

ν :

Kinematic viscosity of the fluid (m2 s−1)

ρ :

Density of fluid (kg m−3)

μ :

Dynamic viscosity

c:

Center

f:

Fluid domain

b:

Battery

∞:

Free stream

max:

Maximum

References

  1. Xu X, He R. Review on the heat dissipation performance of battery pack with different structures and operation conditions. Renew Sustain Energy Rev. 2014;29:301–15.

    Article  CAS  Google Scholar 

  2. Liu Z, Wang Y, Zhang J, Liu Z. Shortcut computation for the thermal management of a large air-cooled battery pack. Appl Therm Eng. 2014;66(1–2):445–52.

    Article  Google Scholar 

  3. Wang T, Tseng K, Zhao J, Wei Z. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Appl Energy. 2014;134:229–38.

    Article  Google Scholar 

  4. Srinivasan V, Wang CY. Analysis of electrochemical and thermal behavior of Li-ion cells. J Electrochem Soc. 2003;150(1):A98. https://doi.org/10.1149/1.1526512.

    Article  CAS  Google Scholar 

  5. Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources. 2003;113(1):81–100.

    Article  CAS  Google Scholar 

  6. Kelly K, Mihalic M, Zolot M. Battery usage and thermal performance of the Toyota Prius and Honda Insight during chassis dynamometer testing. In: Battery conference on applications and advances, 2002. The seventeenth annual. 2002, pp. 247–52. http://ieeexplore.ieee.org/abstract/document/986408/. Accessed on 25 May 2018.

  7. Wu M, Liu K, Wang Y, Wan CC. Heat dissipation design for lithium-ion batteries. J Power Sources. 2002;109(1):160–6.

    Article  CAS  Google Scholar 

  8. Verma P, Maire P, Novák P. A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta. 2010;55(22):6332–41. https://doi.org/10.1016/j.electacta.2010.05.072.

    Article  CAS  Google Scholar 

  9. Guo G, Long B, Cheng B, Zhou S, Xu P, Cao B. Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application. J Power Sources. 2010;195(8):2393–8.

    Article  CAS  Google Scholar 

  10. Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc. 2011;158(3):R1. https://doi.org/10.1149/1.3515880.

    Article  CAS  Google Scholar 

  11. Moharana MK, Singh PK, Khandekar S. Optimum Nusselt number for simultaneously developing internal flow under conjugate conditions in a square microchannel. J Heat Transfer. 2012;134(7):071703. https://doi.org/10.1115/1.4006110.

    Article  Google Scholar 

  12. Kim G, Pesaran A, Spotnitz R. A three-dimensional thermal abuse model for lithium-ion cells. J Power Sources. 2007;170(2):476–89.

    Article  CAS  Google Scholar 

  13. Chen S, Wan C, Wang YY. Thermal analysis of lithium-ion batteries. J Power Sources. 2005;140(1):111–24.

    Article  CAS  Google Scholar 

  14. Hatchard T, MacNeil D, Basu A. Thermal model of cylindrical and prismatic lithium-ion cells. J Electrochem Soc. 2001;148(7):A755–61.

    Article  CAS  Google Scholar 

  15. Smith K, Wang CY. Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles. J Power Sources. 2006;160(1):662–73.

    Article  CAS  Google Scholar 

  16. Sun H, Wang X, Tossan B, Dixon R. Three-dimensional thermal modeling of a lithium-ion battery pack. J Power Sources. 2012;206:349–56.

    Article  CAS  Google Scholar 

  17. Doh C, Kim D, Kim H, Shin H, Jeong YD. Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test. J Power Sources. 2008;175(2):881–5.

    Article  CAS  Google Scholar 

  18. Chiu K, Lin C, Yeh S, Lin Y, Chen KC. An electrochemical modeling of lithium-ion battery nail penetration. J Power Sources. 2014;251:254–63.

    Article  CAS  Google Scholar 

  19. Pesaran AA. Battery thermal models for hybrid vehicle simulations. J Power Sources. 2002;110(2):377–82.

    Article  CAS  Google Scholar 

  20. Chalise D, Shah K, Prasher R, Jain A. Conjugate heat transfer analysis of air/liquid cooling of a Li-ion battery pack. J Electrochem Energy Convers Storage. 2018;15(011008):1–8. https://doi.org/10.1115/1.4038258.

    Article  CAS  Google Scholar 

  21. Fan L, Khodadadi J, Pesaran AA. A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles. J Power Sources. 2013;238:301–12.

    Article  CAS  Google Scholar 

  22. Zolot M, Pesaran A, Mihalic M. Thermal evaluation of Toyota Prius battery pack. SAE Technical Papaper, p. No. 2002-01-1962. 2002. http://papers.sae.org/2002-01-1962/. Accessed on 23 May 2018.

  23. Zolot M, Kelly K, Keyser M, Mihalic M. Thermal evaluation of the Honda insight battery pack. In: Intersociety energy conversion engineering conference. 2001, pp. 923–28. https://www.nrel.gov/docs/fy01osti/30095.pdf. Accessed on 25 May 2018.

  24. Choi Y, Kang DM. Prediction of thermal behaviors of an air-cooled lithium-ion battery system for hybrid electric vehicles. J Power Sources. 2014;270:273–80.

    Article  CAS  Google Scholar 

  25. Wang T, Tseng K, Zhao J. Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model. Appl Therm Eng. 2015;90:521–9.

    Article  Google Scholar 

  26. Yang N, Zhang X, Li G, Hua D. Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell. Appl Therm Eng. 2015;80:55–65.

    Article  CAS  Google Scholar 

  27. Xu X, He R. Research on the heat dissipation performance of battery pack based on forced air cooling. J Power Sources. 2013;240:33–41. https://doi.org/10.1016/j.jpowsour.2013.03.004.

    Article  CAS  Google Scholar 

  28. Zhao J, Rao Z, Huo Y, Liu X, Li Y. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles. Appl Therm Eng. 2015;85:33–43.

    Article  Google Scholar 

  29. Mohammadian S, Rassoulinejad-Mousavi SM. Thermal management improvement of an air-cooled high-power lithium-ion battery by embedding metal foam. J Power Sources. 2015;296:305–13.

    Article  CAS  Google Scholar 

  30. Jilte RD, Kumar R, Ahmadi MH, Chen L. Battery thermal management system employing phase change material with cell-to-cell air cooling. Appl Therm Eng. 2019;161:114199.

    Article  Google Scholar 

  31. Jilte RD, Kumar R, Ahmadi MH. Cooling performance of nanofluid submerged vs. nanofluid circulated battery thermal management systems. J Clean Prod. 2019;240:118131.

    Article  CAS  Google Scholar 

  32. Dincer I, Hamut H, Javani N. Thermal management of electric vehicle battery systems. Hoboken: Wiley; 2017.

    Book  Google Scholar 

  33. Karimi G, Li X. Thermal management of lithium-ion batteries for electric vehicles. Int J Energy Res. 2012;37(1):13–24. https://doi.org/10.1002/er.1956.

    Article  CAS  Google Scholar 

  34. Richter F, Vie PJS, Kjelstrup S, Burheim OS. Measurements of ageing and thermal conductivity in a secondary NMC-hard carbon Li-ion battery and the impact on internal temperature profiles. Electrochim Acta. 2017;250:228–37. https://doi.org/10.1016/j.electacta.2017.07.173.

    Article  CAS  Google Scholar 

  35. Panchal S, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Thermal modeling and validation of temperature distributions in a prismatic lithium-ion battery at different discharge rates and varying boundary conditions. Appl Therm Eng. 2016;96:190–9. https://doi.org/10.1016/j.applthermaleng.2015.11.019.

    Article  CAS  Google Scholar 

  36. Yu K, Yang X, Cheng Y, Li C. Thermal analysis and two-directional air flow thermal management for lithium-ion battery pack. J Power Sources. 2014;270:193–200. https://doi.org/10.1016/j.jpowsour.2014.07.086.

    Article  CAS  Google Scholar 

  37. Richter F, Kjelstrup S, Vie PJS, Burheim OS. Thermal conductivity and internal temperature profiles of Li-ion secondary batteries. J Power Sources. 2017;359:592–600. https://doi.org/10.1016/j.jpowsour.2017.05.045.

    Article  CAS  Google Scholar 

  38. Pakdaman M, Akhavan-Behabadi M. An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes. Exp Therm Fluid Sci. 2012;40:103–11.

    Article  Google Scholar 

  39. Shahrul IM, Mahbubul IM, Saidur R, Sabri MFM. Experimental investigation on Al2O3–W, SiO2–W and ZnO–W nanofluids and their application in a shell and tube heat exchanger. Int J Heat Mass Transf. 2016;97:547–58. https://doi.org/10.1016/j.ijheatmasstransfer.2016.02.016.

    Article  CAS  Google Scholar 

  40. Chavan D, Pise A. Experimental investigation of convective heat transfer agumentation using Al2O3/water nanofluid in circular pipe. Heat Mass Transf. 2015. https://doi.org/10.1007/s00231-014-1491-1.

    Article  Google Scholar 

  41. Akhavan-Behabadi M, Shahidi M. Experimental investigation on thermo-physical properties and overall performance of MWCNT–water nanofluid flow inside horizontal coiled wire inserted tubes. Heat Mass Transf. 2016;53(1):291–304.

    Article  Google Scholar 

  42. Afzal A, Nawfal I, Mahbubul IM, Kumbar SS. An overview on the effect of ultrasonication duration on different properties of nanofluids. J Therm Anal Calorim. 2019;135:393–418. https://doi.org/10.1007/s10973-018-7144-8.

    Article  CAS  Google Scholar 

  43. Afzal A, Khan SA, Salee CA. Role of ultrasonication duration and surfactant on characteristics of ZnO and CuO nanofluids. Mater Res Express. 2019;6(11):1150d8. https://doi.org/10.1088/2053-1591/ab5013.

    Article  Google Scholar 

  44. Afzal A, Samee AM, Razak RA. Experimental thermal investigation of CuO–W nanofluid in circular minichannel. Model Meas Control B. 2017;86(2):335–44.

    Article  Google Scholar 

  45. Afzal A, Samee ADM, Razak RKA. Comparative thermal performance analysis of water, engine coolant oil and MWCNT-W nanofluid in a radiator. Model Meas Control B. 2018;87(1):1–6.

    Article  Google Scholar 

  46. Ali HM, Babar H, Shah TR, Sajid MU, Qasim MA, Javed S. Preparation techniques of TiO2 nanofluids and challenges: a review. Appl Sci. 2018;8(4):587. https://doi.org/10.3390/app8040587.

    Article  CAS  Google Scholar 

  47. Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.021.

    Article  CAS  Google Scholar 

  48. Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sustain Energy Rev. 2019;103:556–92. https://doi.org/10.1016/j.rser.2018.12.057.

    Article  CAS  Google Scholar 

  49. Babar H, Ali HM. Airfoil shaped pin-fin heat sink: potential evaluation of ferric oxide and titania nanofluids. Energy Convers Manag. 2019;202:112194. https://doi.org/10.1016/j.enconman.2019.112194.

    Article  CAS  Google Scholar 

  50. Arshad W, Ali HM. Graphene nanoplatelets nanofluids thermal and hydrodynamic performance on integral fin heat sink. Int J Heat Mass Transf. 2017;107:995–1001. https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.127.

    Article  CAS  Google Scholar 

  51. Arshad W, Ali HM. Experimental investigation of heat transfer and pressure drop in a straight minichannel heat sink using TiO2 nanofluid. Int J Heat Mass Transf. 2017;110:248–56. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.032.

    Article  CAS  Google Scholar 

  52. Afzal A, Samee ADM, Razak RKA, Ramis MK. Thermal management of modern electric vehicle battery systems (MEVBS). J Therm Anal Calorim. 2020. https://doi.org/10.1007/s10973-020-09606-x.

    Article  Google Scholar 

  53. Afzal A, Mohammed Samee AD, Abdul Razak RK, Ramis MK. Effect of spacing on thermal performance characteristics of Li-ion battery cells. J Therm Anal Calorim. 2019;135(3):1797–811. https://doi.org/10.1007/s10973-018-7664-2.

    Article  CAS  Google Scholar 

  54. Samee M, Afzal A, Razak A, Ramis MK. Effect of Prandtl number on the average exit temperature of coolant in a heat-generating vertical parallel plate channel: a conjugate analysis. Heat Transf - Asian Res. 2018. https://doi.org/10.1002/htj.21330.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Imran Mokashi or Asif Afzal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokashi, I., Khan, S.A., Abdullah, N.A. et al. Maximum temperature analysis in a Li-ion battery pack cooled by different fluids. J Therm Anal Calorim 141, 2555–2571 (2020). https://doi.org/10.1007/s10973-020-10063-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10063-9

Keywords

Navigation