Skip to main content
Log in

Thermal techniques as a tool for the direction of the preparation of photocatalytically efficient titania thin films and powders

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Photocatalytically active titania thin films and powders were prepared via sol–gel route from TiCl4 precursor. Organic polymer hydroxypropyl cellulose was added into sol in order to increase active surface area. Thin films were deposited onto substrates using dip-coating technique. Thin films and xerogels were thermally treated in a muffle furnace to a different extent. Temperature of heat treatment was determined using thermogravimetry and differential scanning calorimetry, while X-ray diffraction was used to identify the formation of the anatase phase, eventual presence of other crystalline formations and the average particle size. The shape and size of the pores of the selected thin films were analyzed using SEM, while specific surface area of selected thermally treated xerogels was determined using Brunauer–Emmett–Teller (BET) surface area analysis. Measurements of photocatalytic efficiency of thin films and powders were performed by FT-IR spectroscopy; for thin films on the basis of diminishing C–H stretching vibrations of model fatty compound methyl stearate during irradiation with UVA light, while in the case of powders the oxidation of isopropanol into acetone was the model photocatalytic reaction. Obtained results confirm that different factors, such as particle size, porosity, thickness of thin film, the presence and type of crystalline titania modification have a substantial effect on photocatalytic efficiency of prepared titania materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee JD. Concise inorganic chemistry. 4th ed. New York: Chapman & Hall; 1991. p. 684–696.

    Google Scholar 

  2. Chen X, Selloni A. Introduction: titanium dioxide (TiO2) nanomaterials. Chem Rev. 2014. https://doi.org/10.1021/cr500422r.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Carp O, Huisman CL, Reller A. Photoinduced reactivity of titanium dioxide. Prog Solid State Ch. 2004. https://doi.org/10.1016/j.progsolidstchem.2004.08.001.

    Article  Google Scholar 

  4. Addamo M, Bellardita M, Di Paola A, Palmisano L. Preparation and photoactivity of nanostructured anatase, rutile and brookite TiO2 thin films. Chem Commun (Camb). 2006. https://doi.org/10.1039/B612172A.

    Article  Google Scholar 

  5. Saadati F, Keramati N, Ghazi MM. Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: a review. Crit Rev Environ Sci Tec. 2016. https://doi.org/10.1080/10643389.2016.1159093.

    Article  Google Scholar 

  6. Hočevar M, Opara Krašovec U, Bokalič M, Topič M, Veruman W, Brandt H, Hinsch A. Sol-gel based TiO2 paste applied in screen-printed dye-sensitized solar cells and modules. J Ind Eng Chem. 2013. https://doi.org/10.1016/j.jiec.2012.12.046.

    Article  Google Scholar 

  7. Frӧschl T, Hӧrmann U, Kubiak P, Kučerová G, Pfanzelt M, Weiss CK, Behm RJ, Hüsing N, Kaiser U, Landfester K. Wohlfahrt-Mehrens M High surface area crystalline titanium dioxise: potential and limits in electochemical energy storage and catalysis. Chem Soc Rev. 2012. https://doi.org/10.1039/C2CS35013K.

    Article  Google Scholar 

  8. Kamat PV. A Conversation with Akira Fujishima. ACS Energy Lett. 2017. https://doi.org/10.1021/acsenergylett.7b00483.

    Article  Google Scholar 

  9. Hashimoto K, Irie H, Fujishima A. TiO2 photocatalysis: a historical overview and future prospects. Jpn J Appl Phys. 2005. https://doi.org/10.1143/JJAP.44.8269.

    Article  Google Scholar 

  10. Topalov AS, Šojić DV, Molnar-Gabor DA, Abramović BF, Čomor MI. Photocatalytic activity of synthesized nanosized TiO2 towards the degradation of herbicide mecoprop. Appl Catal B-Environ. 2004. https://doi.org/10.1016/j.apcatb.2004.06.012.

    Article  Google Scholar 

  11. Lavrenčič Štangar U, Černigoj U, Maver K, Trebše P, Gross S. TiO2-anatase films made by sol-gel processing and their photodegradation activity towards pollutants in water. In: Benjamin MG, editor. New research on thin solid films. New York: Nova Science Publishers; 2007. p. 107–132.

    Google Scholar 

  12. Sasirekha N, Rajesh B, Chen Y-W. Synthesis of TiO2 sol in a neutral solution using TiCl4 as a precursor and H2O2 as an oxidizing agent. Thin Solid Films. 2009. https://doi.org/10.1016/j.tsf.2009.06.015.

    Article  Google Scholar 

  13. Krýsa J, Keppert M, Jirkovský J, Štengl V, Šubrt J. The effect of thermal treatment on the properties of TiO2 photocatalyst. Mater Chem Phys. 2002. https://doi.org/10.1016/j.matchemphys.2004.03.021.

    Article  Google Scholar 

  14. Meroni D, Pifferi V, Sironi B, Cappelletti G, Falciola L, Ardizzone S. Block copolymers for the synthesis of pure and Bi-promoted nano-TiO2 as active photocatalysts. J Nanopart Res. 2012. https://doi.org/10.1007/s11051-012-1086-z.

    Article  Google Scholar 

  15. Hao WC, Zheng SK, Wang C, Wang TM. Comparison of the photocatalytic activity of TiO2 powder with different particle size. J Mater Sci Lett. 2002. https://doi.org/10.1023/A:1020386019893.

    Article  Google Scholar 

  16. Zhigo Z, Wang CC, Zakaria R, Ying JY. Role of particle size in nanocrystalline TiO2-based photocatalysts. J Phys Chem B. 1998. https://doi.org/10.1021/jp982948+.

    Article  Google Scholar 

  17. Hossoingholi M, Pazouki M, Hosseinnia A, Aboutalebi SH. Room temperature synthesis of nanocrystalline anatase sols and preparation of uniform nanostructured TiO2 thin films: optical and structural properties. J PhysD Appl Phys. 2011. https://doi.org/10.1088/0022-3727/44/5/055402.

    Article  Google Scholar 

  18. Ohtani B, Ogawa Y, Nishimoto S. Photocatalytic activity of amorphous−anatase mixture of titanium(IV) oxide particles suspended in aqueous solutions. J Phys Chem B. 1997. https://doi.org/10.1021/jp962702+.

    Article  Google Scholar 

  19. Porter JF, Lee Y-G, Chan CK. The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2. J Mater Sci. 1999. https://doi.org/10.1023/A:1004560129347.

    Article  Google Scholar 

  20. Shan AY, Ghazi TIM, Rashid SA. Immobilization of titanium dioxide onto supporting materials in heterogenous photocatalysis: a review. Appl Catal A-Gen. 2010. https://doi.org/10.1016/j.apcata.2010.08.053.

    Article  Google Scholar 

  21. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012. https://doi.org/10.1016/j.apcatb.2012.05.036.

    Article  Google Scholar 

  22. Qu Y, Duan X. Challenge and perspective of heterogeneous photocatalysts. Chem Soc Rev. 2013. https://doi.org/10.1039/C2CS35355E.

    Article  PubMed  Google Scholar 

  23. Marolt T, Sever Škapin A, Bernard J, Živčec P, Gaberšček M. Photocatalytic activity of anatase-containing facade coatings. Surf Coat Tech. 2011. https://doi.org/10.1016/j.surfcoat.2011.08.053.

    Article  Google Scholar 

  24. Tasbihi M, Lavrenčič Štangar U, Sever Škapin A, Ristić A, Kaučič V, Novak TN. Titania-containing mesoporous silica powders: structural properties and photocatalytic activity towards isopropanol degradation. J Photoch Photobio A. 2010. https://doi.org/10.1016/j.jphotochem.2010.07.011.

    Article  Google Scholar 

  25. Rozman N, Tobaldi DM, Cvelbar U, Puliyalil H, Labrincha JA, Leagt A, Sever ŠA. Hydrothermal synthesis of rare-earth modified Titania: influence on phase composition, optical properties, and photocatalytic activity. Materials. 2019. https://doi.org/10.3390/ma12050713.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cerc Korošec R, Bukovec P. Sol-gel prepared NiO thin films for electrochromic applications. Acta Chim Slov. 2006;53:136–47.

    Google Scholar 

  27. Gillespie RJ. ROBINSON EA, Characteristic vibrational frequencies of compounds containing Si-0-Si, P-0-P, S-0-S, and C1-0-C1 bridging groups. Can J Chem. 1964;42:2496–503.

    Article  CAS  Google Scholar 

  28. Tanaka Y, Suganuma M. Effects of heat treatment on photocatalytic property of sol–gel derived polycrystalline TiO2. J Sol-Gel Sci Techn. 2001. https://doi.org/10.1023/A:1011268421046.

    Article  Google Scholar 

  29. Žener B, Matoh L, Carraro G, Miljević B, Cerc-Korošec R. Sulfur, nitrogen and platinum doped and co-doped titania thin films with high catalytic efficiency under visible light illumination. Beilstein J Nanotechnol. 2018. https://doi.org/10.3762/bjnano.9.155.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Slovenian Research Agency (research core funding Nos. P1-0134 and P2-0273). The authors are grateful to Dr. Nejc Rozman for BET measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romana Cerc Korošec.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horvat, P., Sever Škapin, A., Lavrenčič Štangar, U. et al. Thermal techniques as a tool for the direction of the preparation of photocatalytically efficient titania thin films and powders. J Therm Anal Calorim 146, 1121–1131 (2021). https://doi.org/10.1007/s10973-020-10099-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10099-x

Keywords

Navigation