Skip to main content
Log in

Thermal stability of the extraction system “TODGA in Isopar M with n-decanol” at above atmospheric pressure

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The gas evolution dynamics has been studied during thermal oxidation of 0.15 and 0.2 mol L−1 solutions of N,N,N′,N’-tetra-n-octyldiglycolamide (TODGA) in Isopar M diluent with n-decanol depending on the concentration of nitric acid. The effect of irradiation of the system “TODGA in Isopar M with n-decanol” on the possibility of a thermal explosion has been determined. Weak exothermic effects were observed for non-irradiated and irradiated mixtures in the presence of 4 mol L−1 HNO3 at 170 °C. At a concentration of nitric acid in the aqueous phase of 8 mol L−1 or more, for non-irradiated and irradiated two-phase systems, the process passes into a thermal explosion mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Egorov GF. Radiation chemistry of extraction systems. Moscow: Energoatomizdat; 1986.

    Google Scholar 

  2. Gromov BV, Sudarikov BN, Savelyeva VI, Rakov EG, Zaitsev VA. Chemical technology of irradiated nuclear fuel. Moscow: Atomizdat; 1971.

    Google Scholar 

  3. Dzhivanova Z, Kadyko M, Smirnov A, Belova E. Study of the products of radiation and thermal destruction in the extraction system of 30 vol% TBP-Isopar-M-HNO3. J Radioanal Nucl Chem. 2019. https://doi.org/10.1007/s10967-019-06593-8.

    Article  Google Scholar 

  4. Herbst RS, Law JD, Todd TA, Romanovskiy VN, Babain VA, Esimantovskiy VM, Smirnov IV, Zaitsev BN. Universal solvent extraction (UNEX) flowsheet testing for the removal of cesium, strontium, and actinide elements from radioactive, acidic dissolved calcine waste. Solvent Extr Ion Exc. 2002. https://doi.org/10.1081/SEI-120014366.

    Article  Google Scholar 

  5. Law JD, Herbst RS, Todd TA, Romanovskiy VN, Babain VA, Esimantovskiy VM, Smirnov IV, Zaitsev BN. The universal solvent extraction (UNEX) process. II. Flowsheet development and demonstration of the UNEX process for the separation of cesium, strontium, and actinides from actual acidic radioactive waste. Solvent Extr Ion Exc. 2001. https://doi.org/10.1081/SEI-100001371.

    Article  Google Scholar 

  6. Herbst RS, Law JD, Todd TA, Romanovskiy VN, Smirnov IV, Babain VA, Esimantovskiy VM, Zaitsev BN. Development of the universal extraction (Unex) process for the simultaneous recovery of Cs, Sr, and actinides from acidic radioactive wastes. Sep Sci Technol. 2003. https://doi.org/10.1081/SS-120022567.

    Article  Google Scholar 

  7. Romanovskiy VN, Smirnov IV, Babain VA, Todd TA, Herbst RS, Law JD, Brewer KN. The universal solvent extraction (UNEX) process. I. Development of the UNEX process solvent for the separation of cesium, strontium, and the actinides from acidic radioactive waste. Solvent Extr Ion Exc. 2001. https://doi.org/10.1081/SEI-100001370.

    Article  Google Scholar 

  8. Kumar S, Muthukumar M, Sinha PK, Kamachi Mudali U, Natarajan R. PVT properties of UNEX/HCCD-PEG diluent phenyl trifluoromethyl sulfone (FS-13) and experimental measurement of vapour pressure in 283.15–363.15 K range. J Radioanal Nucl Chem. 2011. https://doi.org/10.1007/s10967-011-1070-6.

    Article  Google Scholar 

  9. Myasoedov BF, Kalmykov SN. Nuclear power industry and the environment. Mendeleev Commun. 2015. https://doi.org/10.1016/j.mencom.2015.09.001.

    Article  Google Scholar 

  10. Herbst RS, Luther TA, Peterman DR, Babain VA, Smirnov IV, Stoyanov ES. Fundamental chemistry of the universal extraction process for the simultaneous separation of major radionuclides (cesium, strontium, actinides, and lanthanides) from radioactive wastes. ACS Symp Ser. 2006. https://doi.org/10.1021/bk-2006-0943.ch010.

    Article  Google Scholar 

  11. Myasoedov BF, Dzekun EG, Chmutova MK, Babain VA, Pribylova GA, Shadrin AY. Process for recovering rare-earth and actinium group elements. Patent SU 1 524 519 A1. SCST USSR. 1992; bull. 31.

  12. Sánchez-García I, Galán H, Perlado JM, Cobos J. Stability studies of GANEX system under different irradiation conditions. EPJ Nucl Sci Technol. 2019. https://doi.org/10.1051/epjn/2019049.

    Article  Google Scholar 

  13. Paulenova A, Alyapyshev MY, Babain VA, Herbst RS, Law JD. Extraction of lanthanides with diamides of dipicolinic acid from nitric acid solutions. I. Sep Sci Technol. 2008. https://doi.org/10.1080/01496390802121636.

    Article  Google Scholar 

  14. Paulenova A, Alyapyshev MY, Babain VA, Herbst RS, Law JD. Extraction of lanthanoids with diamides of dipcolinic acid from nitric acid solutions. II Synergistic effect of ethyl-tolyl derivates and dicarbollide cobalt. Solvent Extr Ion Exc. 2013. https://doi.org/10.1080/07366299.2012.735528.

    Article  Google Scholar 

  15. Alyapyshev M, Babain V, Borisova N, Eliseev I, Kirsanov D, Kostin A, Legin A, Reshetova M, Smirnova Z. 2,2′-Dipyridyl-6,6′-dicarboxylic acid diamides: synthesis, complexation and extraction properties. Polyhedron. 2010. https://doi.org/10.1016/j.poly.2010.03.021.

    Article  Google Scholar 

  16. Alyapyshev MY, Babain VA, Tkachenko LI, Paulenova A, Popova AA, Borisova NE. New diamides of 2,2′-dipyridyl-6,6′-dicarboxylic acid for actinide-lanthanide separation. Solvent Extr Ion Exc. 2014. https://doi.org/10.1080/07366299.2013.833783.

    Article  Google Scholar 

  17. Alyapyshev MY, Babain VA, Borisova NE, Kiseleva RN, Safronov DV, Reshetova MD. New systems based on 2,2′-dipyridyl-6,6′-dicarboxylic acid diamides for Am–Eu separation. Mendeleev Commun. 2008. https://doi.org/10.1016/j.mencom.2008.11.018.

    Article  Google Scholar 

  18. Borisova NE, Korotkov LA, Ivanov AV, Lapka J, Paulenova A, Belova EV, Stefanovsky SV, Myasoedov BF. New potentialities of the UNEX process using polyheterocyclic diamides. Radiochemistry. 2016. https://doi.org/10.1134/S1066362216060072.

    Article  Google Scholar 

  19. Alyapyshev MY, Babain VA, Tkachenko LI, Eliseev II, Didenko AV, Petrov ML. Dependence of extraction properties of 2,6-dicarboxypyridine diamides on extractant structure. Solvent Extr Ion Exc. 2011. https://doi.org/10.1080/07366299.2011.581049.

    Article  Google Scholar 

  20. Milyutin VV, Khesina ZB, Laktyushina AA, Buryak AK, Nekrasova NA, Kononenko OA, Pavlov YS. Chemical durability and radiation resistance of sorbents based on N,N,N′,N′-tetra-n-octyldiglycolamide. Radiochemistry. 2016. https://doi.org/10.1134/S1066362216010094.

    Article  Google Scholar 

  21. Whittaker D, Geist A, Modolo G, Taylor R, Sarsfield M, Wilden A. Applications of diglycolamide based solvent extraction processes in spent nuclear fuel reprocessing, part 1: TODGA. Solvent Extr Ion Exc. 2018. https://doi.org/10.1080/07366299.2018.1464269.

    Article  Google Scholar 

  22. Alyapyshev M, Babain V, Eliseev I, Tkachenko L. Actinides and lanthanides extraction by diglycolic acid diamides in new polar fluorinated diluents. Proceedings of the International conference on advanced nuclear fuel cycles and systems «Global 2011». Japan, Makuhari Messe, Dec. 11–16, 2011. 2011; paper 357771.

  23. Aljapyshev MJ, Babain VA, Eliseev II, Tkachenko LI, Ustynjuk JA, Reshetova MD, Borisova NE, Ivanov AV, Logunov MV. Extraction mixture for separating actinides from liquid radioactive wastes. Patent RU 2 499 308 C2. Russian Federation. 2013; bull. 21.

  24. Belova EV, Nazin ER, Skvortsov IV, Sokolov IP, Rodin AV, Stefanovsky SV, Myasoedov BF. Thermal stability and radiation resistance of trifluoromethyl phenyl sulfone in the presence of nitric acid. Radiochemistry. 2016. https://doi.org/10.1134/S1066362216050076.

    Article  Google Scholar 

  25. Goletskij ND, Zilberman BY, Myasoedov BF, Naumov AA, Romanovskij VN. Extraction mixture for the recovery of TPE and REE from high-active rafinat of NPP SNF processing and the method of its use (versions). Patent RU 2623943 C1. Russian Federation. 2017; bull. 19.

  26. Hyder ML. Safe conditions for contacting nitric acid or nitrates with tri-n-butyl phosphate (TBP). United States: N.p. 1994; https://doi.org/10.2172/10188417.

  27. Nowak Z, Nowak M. Thermal degradation of TBP-diluent systems. Radiochem Radioanal Lett. 1979;38(5–6):377–85.

    CAS  Google Scholar 

  28. Robinson RN, Gutowski DM, Yeniscavich W. Control of red oil explosions in defense nuclear facilities 2003. Defense Nuclear Facilities Safety Board Technical Report (DNFSB/TECH-33), November, 2003.

  29. Usachev VN, Markov GS. Incidents caused by red oil phenomena at semi-scale and industrial radiochemical units. Radiochemistry. 2003. https://doi.org/10.1023/A:1022353014980.

    Article  Google Scholar 

  30. NP-016-05. General safety provisions for nuclear fuel cycle facilities. Rostekhnadzor. Moscow, Russian Federation. 2005.

  31. NP-013-99. Spent nuclear fuel processing plants. Safety requirements. Gosatomnadzor. Moscow, Russian Federation. 1999.

  32. Venkatesan KA, Chandran K, Ramanathan N, Anthonysamy S, Ganesan V, Srinivasan TG. Thermal decomposition characteristics of octyl(phenyl)-N, N-diisobutylcarbamoylmethylphosphine oxide-tri n-butyl phosphate-nitric acid systems. J Therm Anal Calorim. 2014. https://doi.org/10.1007/s10973-013-3504-6.

    Article  Google Scholar 

  33. Sreenivasulu B, Chandran K, Clinsha PC, Suresh A, Sivaraman N, Anthonysamy S. Effect of gamma irradiation on thermal decomposition of tri-iso-amyl phosphate-nitric acid biphasic systems. J Therm Anal Calorim. 2016. https://doi.org/10.1007/s10973-016-5375-0.

    Article  Google Scholar 

  34. Dicholkar DD, Kumar P, Heer PK, Gaikar VG, Kumar S, Natarajan R. Synthesis of N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide (TODGA) and its steam thermolysis-nitrolysis as a nuclear waste solvent minimization method. Ind Eng Chem Res. 2013. https://doi.org/10.1021/ie302603q.

    Article  Google Scholar 

  35. Skvortsov IV, Kalistratova VV, Belova EV, Rodin AV, Sokolov IP, Myasoedov BF. Thermal properties of 2,2′-bipyridine-6,6′-dicarboxylic acid bis(N-ethyl-4-hexylanilide), an extractant for radioactive waste components. Radiochemistry. 2017. https://doi.org/10.1134/S1066362217060091.

    Article  Google Scholar 

  36. Skvortsov IV, Kalistratova VV, Rodin AV, Belova EV, Myasoedov BF, Borisova NE, Tsarev DA. Thermal stability of extractants based on diamides of heterocyclic carboxylic acids. Radiochemistry. 2018. https://doi.org/10.1134/S1066362218060061.

    Article  Google Scholar 

  37. Skvortsov IV, Belova EV, Pavlov YS, Myasoedov BF. Effect of irradiation on the dynamics of gas evolution in thermal oxidation of diamide extractants in F-3 diluent. Radiochemistry. 2018. https://doi.org/10.1134/S106636221806005X.

    Article  Google Scholar 

  38. Srvortsov IV, Belova EV, Sokolov IP, Rodin AV, Stefanovsky SV, Mysoedov BF. A study of thermolysis of irradiated diamide-containing extraction systems with nitric acid. Nucl Eng Technol. 2018. https://doi.org/10.1016/j.net.2018.07.011.

    Article  Google Scholar 

  39. Skvortsov IV, Belova EV, Rodin AV, Borisova NE, Ivanov AV, Myasoedov BF. Thermal stability of irradiated solutions of 2,2′-bipyridine-6,6′-dicarboxylic acid bis(N-ethyl-4-hexylanilide) in fluorinated sulfones. Radiochemistry. 2017. https://doi.org/10.1134/S106636221706008X.

    Article  Google Scholar 

  40. Belova EV, Skvortsov IV, Dzhivanova ZV, Nikitina JV. The effect of preliminary irradiation on the dynamics of gas evolution during thermal oxidation of an extractant based on dicarboxylic acid diamide in fluorinated sulfones. In: Proceedings of the Kola Science Center of RAS. Chemistry and materials science. 2018; https://doi.org/10.25702/KSC.2307-5252.2018.9.1.230-233.

  41. Skvortsov IV, Belova EV, Rodin AV, Myasoedov BF. Effect of irradiation on the lower temperature limit of flame propagation in the TODGA-based extraction mixture. Radiochemistry. 2019. https://doi.org/10.1134/S1066362219060067.

    Article  Google Scholar 

  42. Skvortsov IV, Belova EV, Yudintsev SV. Effect of irradiation on the oxidation kinetics of TODGA-based extraction mixtures at atmospheric pressure. Nucl Eng Technol. 2020. https://doi.org/10.1016/j.net.2020.02.024.

    Article  Google Scholar 

  43. RB-060-10. Provision on assessment of fire and explosion safety of technological processes of radiochemical production. Rostekhnadzor. Moscow, Russian Federation. 2010.

  44. Nazin ER, Zachinyaev GM, Rodin AV, Belova EV, Thorzhnitsky GP, Myasoedov BF. Gamma radiation thermal stability of two-phase mixtures of nitric acid with degraded TBP in a closed vessel. Nucl Techol. 2016. https://doi.org/10.13182/NT15-77.

    Article  Google Scholar 

  45. Nazin ER, Zachinyaev GM, Belova EV, Tkhorzhnitskii GP, Myasoedov BF. Exothermic processes in mixtures of TBP with nitric acid. Radiochemistry. 2017. https://doi.org/10.1134/S1066362217050125.

    Article  Google Scholar 

  46. Dzhivanova ZV, Smirnov AV, Pavlov YS, Belova EV. Thermal stability of the extraction system “30% TBP–Isopar-M–HNO3” in isochoric mode. Prog Nucl Energy. 2019. https://doi.org/10.1016/j.pnucene.2019.103174.

    Article  Google Scholar 

  47. Nazin ER, Zachinyaev GM. Fire and explosion safety of technological processes in radiochemical industry. Moscow: STC NRS; 2009.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to anonymous reviewers whose valuable comments helped to improve this article.

Funding

This work was financially supported by Russian Science Foundation (project 16-19-00191).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by I.V. Skvortsov, A.V. Smirnov and E.V. Belova. The first draft of the manuscript was written by I.V. Skvortsov and E.V. Belova, and all authors commented on previous versions of the manuscript. The manuscript was translated into English by A.V. Smirnov and edited and reviewed by A.V. Smirnov and E.V. Belova. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Anton Smirnov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skvortsov, I., Smirnov, A. & Belova, E. Thermal stability of the extraction system “TODGA in Isopar M with n-decanol” at above atmospheric pressure. J Therm Anal Calorim 146, 1221–1228 (2021). https://doi.org/10.1007/s10973-020-10082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-020-10082-6

Keywords

Navigation