Skip to main content

Advertisement

Log in

Studies of the photocatalytic and electrochemical performance of the Fe2O3/TiO2 heteronanostructure

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The α-Fe2O3/TiO2 nanostructure material, synthesized on FTO (fluorine-doped tin oxide) substrate using the hydrothermal method at 180 °C for 5 h, exhibits an enhanced performance in the photocatalytic degradation of an organic dye. The optical band gap was found to decrease compared to the TiO2 one. The photocatalytic performances of the as-prepared heterojunction were evaluated with the degradation of methylene blue (MB) in an aqueous medium. The results revealed that the photocatalytic activity of the Fe2O3/TiO2/FTO was much higher than that of the pure TiO2. In addition, the photocurrent of the Fe2O3/TiO2/FTO heterojunction was remarkably higher than that of the bare TiO2 electrode. The obtained results indicate that the heterojunction formed between Fe2O3 and TiO2significantly improved the separation efficiency of the photo-generated electron–hole pairs. The electrochemical properties of the as-synthesized nanocomposite materials (α-Fe2O3/TiO2) were also evaluated with cyclic voltammetry for 1000 cycles. This nanocomposite exhibited an enhanced specific discharge capacity compared to the Fe2O3 nanomaterial. The as-produced material proved to have an impressive performance as a high-capacity anode for Na+-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T.N. Veziroglu, S. Sahin, 21 st century’s energy: hydrogen energy system. Energy Convers. Manag. 49, 1820–1831 (2008)

    CAS  Google Scholar 

  2. K. Nakata, T. Ochiai, T. Murakami, A. Fujishima, Electrochim. Acta 84, 103–111 (2012)

    CAS  Google Scholar 

  3. J. Zhao, B. Liu, L. Meng, S. He, R. Yuan, Y. Hou, Z. Ding, H. Lin, Z. Zhang, X. Wang, J. Long, Plasmonic control of solar-driven CO2 conversion at the metal/ZnO interfaces. Applied Catalysis B: Environmental 256, 117823 (2019)

    CAS  Google Scholar 

  4. J. Long, H. Chang, G. Quan, X. Jie, L. Fan, S. Wang, Y. Zhou, W. Wei, L. Huang, X. Wang, P. Liu, W. Huang, Gold-plasmon enhanced solar-to-hydrogen conversion on the 001 facets of anatase TiO2nanosheets. Energ. & Environ. Sci. 7, 973–977 (2014)

    CAS  Google Scholar 

  5. L. Meng, Z. Chen, Z. Ma, S. He, Y. Hou, H.-H. Li, R. Yuan, X.-H. Huang, X. Wang, X. Wang, J. Long, Gold Plasmon-Induced Photocatalytic Dehydrogenative Coupling of Methane to Ethane on Polar Oxide Surfaces. Energ. & Environ. Sci. 11, 294–298 (2018)

    CAS  Google Scholar 

  6. X. Jie, L. Luo, G. Xiao, Z. Zhang, H. Lin, X. Wang, J. Long, Layered C3N3S3 polymer/graphene hybrids as metal-free catalysts for selective photocatalytic oxidation of benzylic alcohols under visible light. ACS Catal. 4, 3302–3306 (2014)

    Google Scholar 

  7. C.C. Wang, Y. Zhan, Z.Y. Wang, ChemistrySelect 3, 1713–1718 (2018)

    CAS  Google Scholar 

  8. H. Zhang, L. Ma, J. Ming, B. Liu, Y. Zhao, Y. Hou, Z. Ding, X. Chao, Z. Zhang, J. Long, Amorphous Ta2OxNy-enwrapped TiO2 rutile nanorods for enhanced solar photoelectrochemical water splitting. Appl. Catal. B: Environ. 243, 481–489 (2019)

    CAS  Google Scholar 

  9. R.L. Spray, K.J. McDonald, K.S. Choi, Enhancing photoresponse of nanoparticulate alpha-Fe2O3 electrodes by surface composition tuning. J. Phys. Chem. C 115(8), 3497–3506 (2011)

    CAS  Google Scholar 

  10. A. Umar, M. Abaker, M. Faisal, S.W. Hwang, S. Baskoutas, S.A. Al-Sayari, High-yield synthesis of well-crystalline alpha-Fe2O3 nanoparticles: structural, optical and photocatalytic properties. J. Nanosci. Nanotechnol. 11(4), 3474–3480 (2011)

    CAS  PubMed  Google Scholar 

  11. Y. Cong, Z. Li, Z. Yi, W. Qi, X. Qian, Synthesis of α-Fe2O3/TiO2 nanotube arrays for photoelectro-Fenton degradation of phenol. Chem. Engin. J. 191, 356–363 (2012)

    CAS  Google Scholar 

  12. L. Rong, J. Yuefa, W. Jun, Z. Qiang, Photocatalytic Degradation and Pathway of Oxytetracycline in Aqueous Solution by Fe2O3/TiO2 Nanopowders. RSC Adv. 51, 1–9 (2015)

    Google Scholar 

  13. Y. Zhang, Y. Tang, W. Li, X. Chen, Nanostructured TiO2-based Anode Materials for High-performance Rechargeable Lithium ion Batteries. Chem. NanoMat. 2, 764–775 (2016)

    CAS  Google Scholar 

  14. H. Ren et al., Multishelled TiO2 hollow microspheres as anodes with superior reversible capacity for lithium ion batteries. Nano Lett. 14, 6679–6684 (2014)

    CAS  PubMed  Google Scholar 

  15. Y. Ren et al., Nanoparticulate TiO2 (B): an anode for lithium-ion batteries. Angew. Chem. Int. Ed. 51, 2164–2167 (2012)

    CAS  Google Scholar 

  16. L. Zhang, H.B. Wu, X.W.D. Lou, Iron-oxide-based advanced anode materials for lithium–ion batteries. Adv. Energy. Mater. 4, 1300958 (2014)

    Google Scholar 

  17. T. Jiajia, H. Meiling, Z. Miao, C. Xiaoshuang, S. Zhaoqi, Effects of growth substrate on the morphologies of TiO2 hierarchical nanoarrays and their optical and photocatalytic properties. J. Mater. Sci.: Mater. Electron. 27, 2103–2107 (2016)

    Google Scholar 

  18. N. Zlatko, K. Demie, L. Leonardo, W. Tianlong, A.B. Ryan, D.O. Samuel, L.G. Pedro, M.R. Quentin, F.L.E. Richard, M. Sara, K.L. Vlado, Origin of reduced magnetization and domain formation in small magnetite nanoparticles. Sci. Rep. 7, 5291 (2017)

    Google Scholar 

  19. T. Jiajia, Y. Guang, C. Yunlang, Z. Miao, L. Jianguo, S. Shiwei, H. Gang, J. Xishun, C. Xiaoshuang, S. Zhaoqi, Enhanced optical and photocatalytic properties of Ag quantum dots-sensitized nanostructured TiO2/ZnOheterojunctions. J. Alloys Compd. 688, 605–612 (2016)

    Google Scholar 

  20. D. Lee, Y. Rho, F. Allen, A. Minor, S.H. Ko, C. Grigoropoulos, Synthesis of hierarchical TiO2 nanowires with densely-packed and omnidirectional branches. Nanoscale (2013)

  21. Y. Meidan, L. Hsiang-Yu, L. Changjian, L. Zhiqun, Hierarchical rutile TiO2 flower cluster-based high efficiency dye-sensitized solar cells via direct hydrothermal growth on conducting substrates. Small 9, 312–321 (2013)

    Google Scholar 

  22. G.C. Hyun, S. Jieun, S.K. Hyun, S. Woonsup, B.Y. Kyung, S.K. Young, Facile preparation of Fe2O3 thin film with photoelectrochemical properties. Chem. Commun. 47, 2441–2443 (2011)

    Google Scholar 

  23. T. Wen-Feng, Y. Ya-Ting, W. Ming-Xia, L. Fan, K.K. Luuk, Shape evolution synthesis of monodisperse spherical, ellipsoidal, and elongated hematite (α-Fe2O3) nanoparticles using ascorbic acid. Cryst. Growth Des. 14, 157–164 (2014)

    Google Scholar 

  24. H. Xia et al., Hierarchical TiO2-B nanowire@α-Fe2O3nanothorn core-branch arrays as superior electrodes for lithium-ion microbatteries. Nano Res 7, 1797–1808 (2014)

    CAS  Google Scholar 

  25. J. Luo et al., Rationally designed hierarchical TiO2@Fe2O3 hollow nanostructures for improved lithium ion storage. Adv. Energy Mater. 3, 737–743 (2013)

    CAS  Google Scholar 

  26. T. Yamashita, P. Hayes, Analysis of xps spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008)

    CAS  Google Scholar 

  27. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of amorphous germanium. Phys. Stat. Sol. 15, 627–637 (1966)

    CAS  Google Scholar 

  28. S. Yang, X. Quan, X. Li, Y. Liu, S. Chen, G. Chen, Preparation, characterization and photoelectrocatalytic properties of nanocrystalline Fe2O3/TiO2, ZnO/TiO2and Fe2O3/ZnO/TiO2 composite film electrodes toward pentachlorophenol degradation. Phys. Chem. Chem. Phys. 6, 659–664 (2004)

    CAS  Google Scholar 

  29. P. Linlin, X. Tengfeng, L. Yongchun, F. Haimei, W. Dejun, Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Phys. Chem. Chem. Phys. 12, 8033–8041 (2010)

    Google Scholar 

  30. C. Wei, Z. Maojin, R. Xiaosai, M. Andrew, Synthesis and photocatalytic activity of monolithic Fe2O3/TiO2. S. Afr. J. Chem. 70, 127–131 (2017)

    Google Scholar 

  31. M.R. Mohammed, M.A. Abdullah, E.Y. Tamer, M.M. Hadi, Photocatalytic degradation of remazol brilliant orange 3R using wet-chemically prepared CdO-ZnO nanofibers for environmental remediation. Mater. Express. 6, 137–148 (2016)

    Google Scholar 

  32. W. Liugang, Z. Junying, L. Chunzhi, Z. Hailing, W. Wenwen, W. Tianmin, Synthesis, characterization and photocatalytic activity of TiO2 film/Bi2O3 microgrid heterojunction. J. Mater. Sci. Technol. 27, 59–63 (2011)

    Google Scholar 

  33. Z. Panpan, L. Zhanggao, X. Yu, F. Jing, X. Jiangwei, Studies on facile synthesis and properties of mesoporous CdS/TiO2 composite for photocatalysis applications. J. Alloys. Compd. 692, 170–177 (2017)

    Google Scholar 

  34. S.D. Deldkar, H.M. Yadav, S.N. Achary, S.S. Meena, S.H. Pawar, Structural refinement and photocatalytic activity of Fe-doped anatase TiO2 nanoparticles. Appl. Surf. Sci. 263, 536–545 (2012)

    Google Scholar 

  35. Z. Chen, H.N. Dinh, E. Miller, Photoelectrochemical water splitting (Springer, New York, 2013), pp. 49–61

    Google Scholar 

  36. L. Yin, Y. Xia, Core-shell structured α-Fe2O3@TiO2 nanocomposites with improved photocatalytic activity in visible light region. Phys. Chem. Chem. Phys. 42, 1–7 (2013)

    Google Scholar 

  37. G.L. Jian, B.G. Wan, H. Kai, B.Z. Jian, M.M. Fan, P.S. Xue, Q.S. Zhao, Effect of annealing temperature on photocatalytic activity of ZnO thin films prepared by sol–gel method. Superlattice. Microstruct. 50, 98–106 (2011)

    Google Scholar 

  38. J. Aslam, M.R. Mohammed, F. Mohammed, B.K. Sher, Studies on photocatalytic degradation of acridine orange and chloroform sensing using as-grown antimony oxide. Microstruct. Mater. Sci. Appl. 2, 676–683 (2011)

    Google Scholar 

  39. L.P. Zhu, N.C. Bing, D.D. Yang, Y. Yang, G.H. Liao, L.J. Wang, Synthesis and photocatalytic properties of core–shell structured α-Fe2O3@SnO2shuttle-like nanocomposites. Cryst. Eng. Commun. 13, 4486–4490 (2011)

    CAS  Google Scholar 

  40. X. Zhang, L. Zhang, T. Xie, D. Wang, Low-temperature synthesis and high visible-light-induced photocatalytic activity of BiOI/TiO2 heterostructures. J. Phys. Chem. C 113, 7371–7378 (2009)

    CAS  Google Scholar 

  41. X. Lin, J. Xing, W. Wang, Z. Shan, F. Xu, F. Huang, Photocatalytic activities of heterojunction semiconductors Bi2O3/BaTiO3: a strategy for the design of efficient combined photocatalysts. J. Phys. Chem. C 111, 18288–18293 (2007)

    CAS  Google Scholar 

  42. M.A. Butler, D.S. Ginley, Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J. Electrochem. Soc. 125, 228–232 (1978)

    CAS  Google Scholar 

  43. M.A. Butler, D.S. Ginley, Prediction of flatband potentials at semiconductor-electrolyte interfaces from atomic electronegativities. J. Electrochem. Soc. 125(2), 228–232 (1978)

    CAS  Google Scholar 

  44. M. Niu, F. Huang, L. Cui, P. Huang, Y. Yu, Y. Wang, Hydrothermal synthesis, structural characteristics, and enhanced photocatalysis of SnO2/α-Fe2O3 semiconductor nanoheterostructures. ACS Nano 4, 681–688 (2010)

    CAS  PubMed  Google Scholar 

  45. Y. Zhao, Y. Meng, P. Jiang, Carbon@MnO2 core-shell nanospheres for flexible high-performance supercapacitor electrode materials. J. Power Sources 259, 219–226 (2014)

    CAS  Google Scholar 

  46. S.S. Shinde, G.S. Gunda, D.P. Dubal, S.B. Jambure, C.D. Lokhande, Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance. Electrochim. Acta 119, 1–10 (2014)

    CAS  Google Scholar 

  47. D. Qu, H. Shi, Studies of activated carbons used in double-layer capacitors. J. Power Sources 74, 99–107 (1998)

    CAS  Google Scholar 

  48. B. Babakhani, D.G. Ivey, Anodic deposition of manganese oxide electrodes with rod-like structures for application as electrochemical capacitors. J. Power Sources 195, 2110–2117 (2010)

    CAS  Google Scholar 

  49. B.S. Singu, K.R. Yoon, Porous manganese oxide nanospheres for pseudocapacitor applications. J. Alloys. Compd. 695, 771–778 (2017)

    CAS  Google Scholar 

  50. Y. Zhou, L. Cao, F. Zhang, B. He, H. Li, Lithium insertion into TiO2 nanotube prepared by the hydrothermal process. J. Electrochem. Soc. A 150, 1246 (2003)

    Google Scholar 

  51. R. Kirchgeorg, M. Kallert, N. Liu, R. Hahn, M.S. Killian, P. Schmuki, Key factors for an improved lithium ion storage capacity of anodic TiO2 nanotubes. Electrochimica Acta. 198, 56–65 (2016)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Kouass.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Othmani, A., Kouass, S., Khalfi, T. et al. Studies of the photocatalytic and electrochemical performance of the Fe2O3/TiO2 heteronanostructure. J IRAN CHEM SOC 17, 3339–3354 (2020). https://doi.org/10.1007/s13738-020-01993-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-01993-0

Keywords

Navigation