Skip to main content
Log in

Impedance measurements on QLED devices: analysis of high-frequency loop in terms of material properties

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Electrochemical impedance spectroscopy is used to study red and green quantum-dot light-emitting diodes devices. The high-frequency loop is interpreted in terms of the thickness, dielectric constant, and resistivity distribution of the hole-injection layer. The analysis employed the device capacitance obtained from a measurement model analysis, the film thickness measured by scanning electron microscopy, and an interpretation of the impedance based on a power-law model. Impedance measurements performed on hole-transport–only devices yielded results that were consistent with the interpretation of the high-frequency capacitive loop in terms of the properties of the hole-injection layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cho J, Kim H, Jang K, Sohn H, Kim J, Heo J, Yi J, Sohn S, Nam E, D. Jung (2008) .

  2. Nowy S, Ren W, Wagner J, Weber JA, Brütting W. (2009) Organic Light Emitting Materials and Devices XIII So F., Adachi C. (eds), vol 7415

  3. Hsiao CC, Chang CH, Jen TH, Hung MC, Chen SA (2006) Applied Physics Letters 88(3):033512. https://doi.org/10.1063/1.2165192

    Article  Google Scholar 

  4. Kwak K, Cho K, Kim S (2013) Optics express 21:29558

    Article  Google Scholar 

  5. Cai SD, Gao CH, Zhou DY, Gu W, Liao LS (2012) ACS Applied Materials & Interfaces 4(1):312

    Article  CAS  Google Scholar 

  6. Chulkin P, Lapkowski M, Bryce MR, Santos J, Data P (2017) Electrochim Acta 258:1160. https://doi.org/10.1016/j.electacta.2017.11.171

    Article  CAS  Google Scholar 

  7. Chulkin P, Vybornyi O, Lapkowski M, Skabara PJ, Data P, Mater J (2018) Chem. C 6:1008. 10.1039/C7TC04599A

    Article  CAS  Google Scholar 

  8. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) J Electrochem Soc 157:C452

    Article  CAS  Google Scholar 

  9. Hirschorn B, Orazem ME, Tribollet B, Vivier V, Frateur I, Musiani M (2010) J Electrochem Soc 157:C458

    Article  CAS  Google Scholar 

  10. Agarwal P, Orazem ME, García-rubio L.h. (1992) J Electrochem Soc 139:1917

    Article  CAS  Google Scholar 

  11. Agarwal P, Crisalle OD, Orazem ME, García-rubio L.h. (1995) J Electrochem Soc 142:4149

    Article  CAS  Google Scholar 

  12. Agarwal P, Orazem ME, García-rubio L.h. (1995) J Electrochem Soc 142:4159

    Article  CAS  Google Scholar 

  13. Orazem ME, Tribollet B, Vivier V, Marcelin S, Pébère N., Bunge AL, White EA, Riemer DP, Frateur I, Musiani M (2013) J Electrochem Soc 160:C215

    Article  CAS  Google Scholar 

  14. Amand S, Musiani M, Orazem ME, Pébère N., Tribollet B, Vivier V (2013) Electrochim Acta 87:693

    Article  CAS  Google Scholar 

  15. Hirschorn B, Tribollet B, Orazem ME (2008) Israel Journal of Chemistry 48:133

    Article  CAS  Google Scholar 

  16. Hirschorn B, Orazem ME (2009) J Electrochem Soc 156(10):C345

    Article  CAS  Google Scholar 

  17. Orazem ME, Tribollet B (2017) Electrochemical impedance spectroscopy, 2nd edn. John Wiley & Sons, Hoboken

    Book  Google Scholar 

  18. Liao H, Watson W, Dizon A, Tribollet B, Vivier V, Orazem ME (2020). Electrochimica Acta 342:136747

  19. Orazem ME, Tribollet B, Vivier V, Marcelin S, Pébère N., Bunge AL, White EA, Riemer DP, Frateur I, Musiani M (2013) J Electrochem Soc 160:C215

    Article  CAS  Google Scholar 

  20. Orazem ME, Tribollet B, Vivier V, Riemer DP, White EA, Bunge AL (2014) J Braz Chem Soc 25:532

    CAS  Google Scholar 

  21. Sakamoto Y, Ishiguso M, Kitigawa G (1986) Akaike information criterion statistics, D. Reidel, Boston

    Google Scholar 

Download references

Funding

This work was supported by Nanophotonica and a matching grant from the University of Florida Industry Partnership (UFLIPS): Grant# OR-DRPD-UFLIPS-G-2018. Mark Orazem received financial support from the University of Florida Foundation Preeminence and the Dr. and Mrs. Frederick C. Edie term professorships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Orazem.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is submitted in celebration of the 65th birthday of Prof. Fritz Scholz. One of the authors, Mark Orazem, met Prof. Scholz at the “First Workshop of Material Science for Corrosion Protection” held in 2017 in Santiago, Chile, where we discussed the importance of education in electrochemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

You, C., Titov, A., Kim, B.H. et al. Impedance measurements on QLED devices: analysis of high-frequency loop in terms of material properties. J Solid State Electrochem 24, 3083–3090 (2020). https://doi.org/10.1007/s10008-020-04765-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04765-1

Keywords

Navigation