Skip to main content
Log in

Preparation and characterization of a novel polylactic acid/hydroxyapatite composite scaffold with biomimetic micro-nanofibrous porous structure

  • Biomaterials Synthesis and Characterization
  • Original Research
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Combining synthetic polymer scaffolds with inorganic bioactive factors is widely used to promote the bioactivity and bone conductivity of bone tissue. However, except for the chemical composition of scaffold, the biomimetic structure also plays an important role in its application. In this study, we report the fabrication of polylactic acid/hydroxyapatite (PLA/HA) composite nanofibrous scaffolds via phase separation method to mimic the native extracellular matrix (ECM). The SEM analysis showed that the addition of HA dramatically impacted the morphology of the PLA matrix, which changed from 3D nanofibrous network structure to a disorderly micro-nanofibrous porous structure. At the same time, HA particles could be evenly dispersed at the end of the fiber. The FTIR and XRD demonstrated that there was not any chemical interaction between PLA and HA. Thermal analyses showed that HA could decrease the crystallization of PLA, but improve the thermal decomposition temperature of the composite scaffold. Moreover, water contact angle analysis of the PLA/HA composite scaffold demonstrated that the hydrophilicity increased with the addition of HA. Furthermore, apatite-formation ability tests confirmed that HA could not only more and faster induced the deposition of weak hydroxyapatite but also induced specific morphology of HA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ji K, Wang YE, Wei QH, Zhang K, Jiang AG, Rao YW, et al. Application of 3D printing technology in bone tissue engineering. Bio-Des Manuf. 2018;3:203–10.

    Google Scholar 

  2. Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo ROC. Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials. 2016;83:363–82.

    CAS  Google Scholar 

  3. Ye KQ, Liu DH, Kuang HZ, Cai JY, Chen WM, Sun BB, et al. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. J Colloid Inter Sci. 2019;543:625–36.

    Google Scholar 

  4. Ou KL, Hosseinkhani H. Development of 3D in vitro technology for medical applications. Int J Mol Sci. 2014;15:17938–62.

    Google Scholar 

  5. Ku KC, Lee MW, Kuo SM, Yao CH, Chang SJ. Preparation and evaluation of collagen I/gellan gum/beta-TCP microspheres. Conf Proc IEEE Eng Med Biol Soc. 2013;2013:6667–770.

    Google Scholar 

  6. Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA. Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes. Biomaterials. 2007;28:4880–8.

    CAS  Google Scholar 

  7. Engel E, Michiardi A, Navarro M, Lacroix D, Planell JA. Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol. 2008;26:39–47.

    CAS  Google Scholar 

  8. Murugan R, Ramakrishna S. Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng. 2007;13:1845–66.

    CAS  Google Scholar 

  9. Xu T, Yao QQ, Miszuk JM, Sanyour HJ, Hong ZK, Sun HL, et al. Tailoring weight ratio of PCL/PLA in electrospun three-dimensional nanofibrou scaffolds and the effect on osteogenic differentiation of stem cells. Colloid Surf B. 2018;171:31–9.

    CAS  Google Scholar 

  10. Wang XJ, Song GJ, Lou T. Fabrication and characterization of nano composite scaffold of poly(L-lactic acid)/hydroxyapatite. J Mater Sci. 2010;21:183–8.

    CAS  Google Scholar 

  11. Wutticharoenmongkol P, Pavasant P, Supaphol P. Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromolecules. 2007;8:2602–10.

    CAS  Google Scholar 

  12. Schnell E, Klinkhammer K, Balzer S, Brook G, Klee D, Dalton P, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ecaprolactone and a collagen/poly-e-caprolactone blend. Biomaterials. 2007;28:3012–25.

    CAS  Google Scholar 

  13. Nam J, Huang Y, Agarwal S, Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue Eng. 2007;13:2249–57.

    CAS  Google Scholar 

  14. Yao QQ, Cosme JGL, Xu T, Miszuk JM, Picciani PHS, Fong H, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials. 2017;115:115–27.

    CAS  Google Scholar 

  15. Wang XF, Ding B, Li BY. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Tod. 2013;16:229–41.

    CAS  Google Scholar 

  16. Blakeney BA, Tambralli A, Anderson JM, Andukuri A, Lim DJ, Dean DR, et al. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials. 2011;32:1583–90.

    CAS  Google Scholar 

  17. Liu XH, Jin XB, Ma PX. Nanofibrous hollow microspheres self-assembled from star-shaped polymers as injectable cell carriers for knee repair. Nat Mater. 2011;10:398–406.

    Google Scholar 

  18. Conoscenti G, Schneider T, Stoelzel K, Pavia FC, Brucato V, Goegele C, et al. PLLA scaffolds produced by thermally induced phase separation (TIPS) allow human chondrocyte growth and extracellular matrix formation dependent on pore size. Mat Sci Eng C. 2017;80:449–59.

    CAS  Google Scholar 

  19. Xu T, Yang HY, Yang DZ, Yu ZZ. Polylactic acid nanofiber scaffold decorated with chitosan islandlike topography for bone tissue engineering. Appl Mater Interfaces. 2017;9:21094–104.

    CAS  Google Scholar 

  20. Valente TMA, Silva DM, Gones PS, Fernandes MH, Santos JD, Sencadas V. Effect of sterization methods on electrospun poly(lactic acid) (PLA) fiber alignment for biomedical applications. Appl Mater Interfaces. 2016;8:3241–9.

    CAS  Google Scholar 

  21. Kumbar SG, Nukavarapu SP, James R, Nair LS, Laurencin CT. Electrospun poly (lactic acid-co-glycolic acid) scaffolds for skin tissue engineering. Biomaterials. 2008;29:4100–7.

    CAS  Google Scholar 

  22. Zhou PY, Cheng XS, Xia Y, Wang PF, Zou KD, Xu SG, et al. Organic/inorganic composite membranes based on poly(l-lactic-co-glycolic acid) and mesoporous silica for effectivebone tissue engineering. Appl Mater Interfaces. 2014;6:20895–903.

    CAS  Google Scholar 

  23. Xu T, Miszuk JM, Zhao Y, Sun HL, Fong H. Electrospun polycaprolactone 3D nanofibrous scaffold with interconnected and hierarchically structured pores for bone tissue engineering. Adv Health Mater. 2015;4:2238–46.

    CAS  Google Scholar 

  24. Shalumon KT, Anulekha KH, Girish CM, Prasanth R, Nair SV, Jayakumar R. Single step electrospinning of chitosan/poly(caprolactone) nanofibers using formic acid/acetone solvent mixture. Carbohyd Polym. 2010;80:413–9.

    CAS  Google Scholar 

  25. Heidari-Keshel S, Ahmadian M, Biazar E, Gazmeh A, Rabiei M, Adibi M, et al. Surface modification of poly hydroxybutyrate (PHB) nanofibrous mat by collagen protein and its cellular study. Mater Technol. 2016;31:799–805.

    CAS  Google Scholar 

  26. Grande D, Ramier J, Versaceet DL, Renard E, Langlois V. Design of functionalized biodegradable PHA-based electrospun scaffolds meant for tissue engineering applications. N Biotechnol. 2017;37:129–37.

    CAS  Google Scholar 

  27. Rezk AI, Mousa HM, Lee J, Park CH, Kim CS. Composite PCL/HA/simvastatin electrospun nanofifiber coating on biodegradable Mg alloy for orthopedic implant application. Technol Res. 2019;16:477–89.

    CAS  Google Scholar 

  28. Hassan MI, Sultana N, Hamdan S. Bioactivity assessment of poly(-caprolactone)/hydroxyapatite electrospun fibers for bone tissue engineering application. J Nanomater. 2014;2014:1–6.

    Google Scholar 

  29. Heydari Z, Kalhori DM, Afarani MS. Engineered electrospun polycaprolactone (PCL)/octacalcium phosphate (OCP) scaffffold for bone tissue engineering. Mater Sci Eng C. 2017;81:127–32.

    CAS  Google Scholar 

  30. Verma D, Katti K, Katti D. Bioactivity in in situ hydroxyapatite-polycaprolactone composites. J Biomed Mat Res A. 2006;78A:772–80.

    CAS  Google Scholar 

  31. Nguyen NK, Hoai TT, Viet PH. Biomimetic scaffolds based on hydroxyapatite nanorod/poly(d,l) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering. Colloid Surf B. 2015;128:506–14.

    CAS  Google Scholar 

  32. Abdal-hay A, Vanegas P, Hamdy AS, Engel FB, Lim JH. Preparation and characterization of vertically arrayed hydroxyapatite nanoplates on electrospun nanofifibers for bone tissue engineering. Chem Eng J. 2014;254:612–22.

    CAS  Google Scholar 

  33. Ribas RG, Schatkoski VM, Thaís Larissa do Amaral Montanheiro, BRCD Menezes, Stegemann C, DMG Leite, et al. Current advances in bone tissue engineering concerning ceramic and bioglass scaffolds: a review. Ceram Int. 2019;45:21051–61.

    CAS  Google Scholar 

  34. Wei GB, Ma PX. Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials. 2004;25:4749–57.

    CAS  Google Scholar 

  35. Sessini V, Navarro-Baena I, Arrieta MP, Dominici F, López D, Torre L, et al. Effect of the addition of polyester-grafted-cellulose nanocrystals on the shape memory properties of biodegradable PLA/PCL nanocomposites. Polym Degrad Stabil. 2018;152:126–38.

    CAS  Google Scholar 

  36. Woodard LN, Grunlan MA. Hydrolytic degradation of PCL-PLLA semi-IPNs exhibiting rapid, tunable degradation. ACS Biomater Sci Eng. 2018;5:498–508.

    Google Scholar 

  37. Liu SQ, He ZH, Xu GJ, Xiao XF. Fabrication of polycaprolactone nanofibrous scaffolds by facile phase separation approach. Mat Sci Eng C. 2014;44:201–8.

    CAS  Google Scholar 

  38. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60:184–98.

    CAS  Google Scholar 

  39. Zhang JY, Ma SQ, Liu ZH, Geng HJ, Lu X, Zhang X, et al. Guided bone regeneration with asymmetric collagen-chitosan membranes containing aspirin-loaded chitosan nanoparticles. Int J Nanomed. 2017;12:8855–66.

    Google Scholar 

  40. Li XY, Yang Q, Ouyang J, Yang HM, Chang S. Chitosan modified halloysite nanotubes as emerging porous microspheres for drug carrier. Appl Clay Sci. 2016;126:306–12.

    CAS  Google Scholar 

  41. Ma PX, Zhang R. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res. 1999;46:60–72.

    CAS  Google Scholar 

  42. Francesco CP, Gioacchino C, Silvia G, Vincenzo LC, Giulio G, Valerio B. Preparation, characterization and in vitro test of composites poly-lactic acid/hydroxyapatite scaffolds for bone tissue engineering. Biomac. 2018;119:945–53.

    Google Scholar 

  43. Zhao XY, Han Y, Li WJ, Cai B, Gao H, Feng W, et al. BMP-2 immobilized PLGA/hydroxyapatite fifibrous scaffold via polydopamine stimulates osteoblast growth. Mater Sci Eng C. 2017;78:658–66.

    CAS  Google Scholar 

  44. Chen CC, Chueh JY, Tseng H, Huang HM, Lee SY. Preparation and characterization of biodegradable pla polymeric blends. Biomaterials. 2003;24:1167–73.

    CAS  Google Scholar 

  45. Wei XP, Luo YL, Xu F, Chen YS. Sensitive conductive polymer composites based on polylactic acid filled with multiwalled carbon nanotubes for chemical vapor sensing. Synth Met. 2016;215:216–22.

    CAS  Google Scholar 

  46. Zhou YH, Lei L, Yang B, Li JB, Ren J. Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites. Polym Test. 2018;68:34–8.

    CAS  Google Scholar 

  47. Apalangya VA, Rangari VK, Tiimob BJ, Jeelani S, Samuel T. Eggshell based nano-engineered hydroxyapatite and poly(lactic) acid electrospun fibers as potential tissue scaffold. Inter J Biomater. 2019;2019:6762575.

    Google Scholar 

  48. Yao CL, Zhu JM, Xie AJ, Shen YH, Li HY, Zheng B, et al. Graphene oxide and creatine phosphate disodium dual template-directed synthesis of GO/ hydroxyapatite and its application in drug delivery. Mater Sci Eng C. 2017;73:709–15.

    CAS  Google Scholar 

  49. Locardi B, Pazzaglia UE, Gabbi C, Profilo B. Thermal behaviour of hydroxyapatite intended for medical applications. Biomaterials.1993;14:437–41.

    CAS  Google Scholar 

  50. Rajzer I, Menaszek E, Kwiatkowski R, Chrzanowski W. Bioactive nanocomposite PLDL/nano-hydroxyapatite electrospun membranes for bone tissue engineering. J Mater Sci Mater Med. 2014;25:1239–47.

    CAS  Google Scholar 

  51. Rakmae S, Ruksakulpiwat Y, Sutapun W, Suppakarn N. Physical properties and cytotoxicity of surface-modified bovine bone-based hydroxyapatite/poly (lactic acid) composites. J Compos Mater. 2011;45:1259–69.

    CAS  Google Scholar 

  52. Kim CH, Khil MS, Kim HY, Lee HU, Jahng KY. An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J Biomed Mater Res B. 2005;78:283–90.

    Google Scholar 

  53. Unnithan AR, Sasikala ARK, Park CH, Kim CS. A unique scaffold for bone tissue engineering: an osteogenic combination of graphene oxide-hyaluronic acid-chitosan with simvastatin. J Ind Eng Chem. 2016;46:182–91.

    Google Scholar 

Download references

Acknowledgements

Project supported by the Natural Science Foundation of Fujian Province (No. 2018J05092, 2019J01829) and by Fujian Functional Materials Industry Service-oriented Manufacturing Public Service Platform (Grant No. [2018] 236).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuying Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zheng, Y., Liu, R. et al. Preparation and characterization of a novel polylactic acid/hydroxyapatite composite scaffold with biomimetic micro-nanofibrous porous structure. J Mater Sci: Mater Med 31, 74 (2020). https://doi.org/10.1007/s10856-020-06415-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-020-06415-4

Navigation