Skip to main content

Advertisement

Log in

One-Pot Green Synthesis of AgNPs@RGO for Removal of Water Pollutant and Chemical Fixation of CO2 Under Mild Reaction Conditions

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Silver nanoparticles with large surface area and surface available atoms provide promising opportunities to deal with the challenges in catalysis and environmental remediation. Herein, silver nanoparticles impregnated reduced graphene oxide (AgNPs@RGO) is synthesized through the in-situ reduction process using green guava fruit extract as a reducing agent. The synthesized materials are characterized by multiple characterization tools such as FTIR, XRD, UV–Vis, XPS, Raman, FESEM and TEM studies. X-ray photoelectron spectroscopic (XPS) result has confirmed the in-situ reduction of GO and Ag+ ions to RGO and Ago, respectively. Morphological studies like FESEM and TEM have suggested well dispersion of AgNPs onto the RGO sheets. The synthesized material showed improved efficiency for the catalytic reduction of water-pollutant like p-nitrophenol. Here, the catalyst works as a hydrogen transport. The AgNPs@RGO material also showed efficient catalytic activity for terminal alkyne carboxylation up to 98.5% of product yield. The catalyst is reusable for multiple reaction cycles for both the studied reactions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Körbitzer, P. Krauß, S. Belle, J.J. Schneider, C. Thielemann, Electrochemical characterization of graphene microelectrodes for biological applications. ChemNanoMat 5, 427–435 (2019)

    Google Scholar 

  2. K.P. Loh, Q.G. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat Chem 2, 1015–1024 (2010)

    CAS  PubMed  Google Scholar 

  3. S.A. Rashid, S.A.M. Zobir, S. Krishnan, M.M. Hassan, H.N. Lim, One-pot synthesis of graphene oxide sheets and grapheme oxide quantum dots from graphite nanofibers. J Nanopart Res 17, 225 (2015)

    Google Scholar 

  4. S. Dubin, S. Gilje, K. Wang et al., A one-step, solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4, 3845–3852 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. E.C. Salas, Z. Sun, A. Lüttge, J.M. Tour, Reduction of graphene oxide via bacterial respiration. ACS Nano 4, 4852–4856 (2010)

    CAS  PubMed  Google Scholar 

  6. K. Min, T.H. Han, J. Kim, C. Jung, S.M. Hong, C.M.A. Koo, A facile route to fabricate stable reduced graphene oxide dispersions in various media and their transparent conductive thin films. J. Colloid Interface Sci 383, 36–42 (2012)

    CAS  PubMed  Google Scholar 

  7. X. Fan, W. Peng, Y. Li et al., Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20, 4490–4493 (2008)

    CAS  Google Scholar 

  8. L.A. Tang, W.C. Lee, H. Shi et al., Highly wrinkled cross-linked graphene oxide membranes for biological and charge-storage applications. Small 8, 423–431 (2012)

    CAS  PubMed  Google Scholar 

  9. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Reduction of graphene oxide via l-ascorbic acid. Chem. Commun. (Camb) 46, 1112–1114 (2010)

    CAS  Google Scholar 

  10. C. Zhu, S. Guo, Y. Fang, S. Dong, Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4, 2429–2437 (2010)

    CAS  PubMed  Google Scholar 

  11. L. Gan, B. Li, Y. Chen, B. Yu, Z. Chen, Green synthesis of reduced graphene oxide using bagasse and its application in dye removal: a waste-to-resource supply chain. Chemosphere 219, 148–154 (2019)

    CAS  PubMed  Google Scholar 

  12. P. Khanra, T. Kuila, N.H. Kim, S.H. Bae, D.S. Yu, J.H. Lee, Simultaneous bio-functionalization and reduction of graphene oxide by baker's yeast. Chem. Eng. J. 183, 526–533 (2012)

    CAS  Google Scholar 

  13. A. Esfandiar, O. Akhavan, A. Irajizad, Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J. Mater. Chem. 21, 10907–10914 (2011)

    CAS  Google Scholar 

  14. O. Akhavan, E. Ghaderi, S. Aghayee, Y. Fereydooni, A. Talebi, The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J. Mater. Chem. 22, 13773–13781 (2012)

    CAS  Google Scholar 

  15. R. Wijaya, G. Andersan, S. Permatasari Santoso, W. Irawaty, Green reduction of graphene oxide using kaffir lime peel extract (Citrus hystrix) and its application as adsorbent for methylene blue. Sci. Rep. 10, 1–9 (2020)

    Google Scholar 

  16. F.C. Mascarenhas, N. Sykam, M. Selvakumar, M.G. Mahesha, Green reduction of graphene oxide using Indian gooseberry (amla) extract for gas sensing applications. J. Environ. Chem. Eng. 8, 103712 (2020)

    CAS  Google Scholar 

  17. M.L. Guimarães, F.A.G. da Silva Jr., M.M. Costa, H.P. de Oliveira, Green synthesis of silver nanoparticles using Ziziphus joazeiro leaf extract for production of antibacterial agents. Appl. Nanosci. 10, 1073–1081 (2020)

    Google Scholar 

  18. N. Alhokbany, T. Ahama, M. Naushad, S.M. Alshehri, AgNPs embedded N-doped highly porous carbon derived from chitosan based hydrogel as catalysts for the reduction of 4-nitrophenol. Compos. B Eng. 173, 106950 (2019)

    CAS  Google Scholar 

  19. S.S. Ravi, L.R. Christena, N. Sai Subramanian, S.P. Anthony, Green synthesized silver nanoparticles for selective colorimetric sensing of Hg2+ in aqueous solution at wide pH range. Analyst 138, 4370–4377 (2013)

    CAS  PubMed  Google Scholar 

  20. J.E. Ramos-Sanchez, R. Camposeco, S.W. Lee, V. Rodríguez-González, Sustainable synthesis of AgNPs/strontium-titanate-perovskite-like catalysts for the photocatalytic production of hydrogen. Catal. Today 341, 112–119 (2020)

    CAS  Google Scholar 

  21. N. Salam, P. Paul, S. Ghosh, U. Mandi, A. Khan, S.M. Alam, D. Das, S.M. Islam, AgNPs encapsulated by an amine-functionalized polymer nanocatalyst for CO2 fixation as a carboxylic acid and the oxidation of cyclohexane under ambient conditions. New J. Chem. 44, 5448–5456 (2020)

    CAS  Google Scholar 

  22. R.A. Molla, K. Ghosh, B. Banerjee, M.A. Iqubal, S.K. Kundu, S.M. Islam, A. Bhaumik, Silver nanoparticles embedded over porous metal organic frameworks for carbon dioxide fixation via carboxylation of terminal alkynes at ambient pressure. J. Colloid Interface Sci. 477, 220–229 (2016)

    CAS  PubMed  Google Scholar 

  23. S. Das, P. Mondal, S. Ghosh, B. Satpati, S. Deka, S.M. Islam, T. Bala, A facile synthesis strategy to couple porous nanocubes of CeO2 with Ag nanoparticles: an excellent catalyst with enhanced reactivity for the ‘click reaction’and carboxylation of terminal alkynes. New J. Chem. 42, 7314–7325 (2018)

    CAS  Google Scholar 

  24. X. Zhang, W. Zhang, X. Ren, L. Zhang, X. Lu, Ligand-free Ag(I)-catalyzed carboxylation of terminal alkynes with CO2. Org. Lett. 13, 2402–2405 (2011)

    CAS  PubMed  Google Scholar 

  25. D.L. Wang, Y. Fang, S.Y. Wang, S.J. Ji, Silver-mediated activation of terminal alkynes: a strategy to construct bis-ethynynl selenides and tellurides. Tetrahedron 76, 131083 (2020)

    CAS  Google Scholar 

  26. W. Jia, N. Jiao, Cu-catalyzed oxidative amidation of propiolic acids under air via decarboxylative coupling. Org. Lett. 12, 2000–2003 (2010)

    CAS  PubMed  Google Scholar 

  27. W.H. Wang, L. Jia, X. Feng, D. Fang, H. Guo, M. Bao, Efficient carboxylation of terminal alkynes with carbon dioxide catalyzed by ligand-free copper catalyst under ambient conditions. Asian J. Org. Chem. 8, 1501–1505 (2019)

    CAS  Google Scholar 

  28. A.H. Chowdhury, U. Kayal, I.H. Chowdhury, S. Ghosh, S.M. Islam, Nanoporous ZnO supported CuBr (CuBr/ZnO): an efficient catalyst for CO2 fixation reactions. ChemistrySelect 4, 1069–1077 (2019)

    CAS  Google Scholar 

  29. S. Gurunathan, J. Han, J.H. Park, J.H. Kim, An in vitro evaluation of graphene oxide reduced by Ganoderma spp. in human breast cancer cells (MDA-MB-231). Int. J. Nanomed. 9, 1783–1797 (2014)

    Google Scholar 

  30. B. Wang, A.J. Fielding, R.A.W. Dryfe, Electron paramagnetic resonance investigation of the structure of graphene oxide: pH-dependence of the spectroscopic response. ACS Appl. Nano Mater. 2, 19–27 (2018)

    Google Scholar 

  31. E. Desimoni, A.M. Salvi, I.G. Casella, D. Damiano, Controlled chemical oxidation of carbon fibres: an XPS–XAES–SEM study. Surf. Interface Anal. 20, 909 (1993)

    CAS  Google Scholar 

  32. J. Thiel, L. Pakstis, S. Buzby, M. Raffi, C. Ni, D.J. Pochan, S.I. Shah, Antibacterial properties of silver-doped titania. Small 3, 799–803 (2007)

    CAS  PubMed  Google Scholar 

  33. A.C. Ferrari, J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095–14107 (2000)

    CAS  Google Scholar 

  34. M.J. McAllister, J.L. Li, D.H. Adamson, Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 19, 4396–4404 (2007)

    CAS  Google Scholar 

  35. J. Li, C.Y. Liu, Ag/graphene heterostructures: synthesis, characterization and optical properties. Eur. J. Solid State Inorg. Chem. 8, 1244–1248 (2010)

    Google Scholar 

  36. Z. Jiang, J. Xie, D. Jiang, X. Wei, M. Chen, Modifiers-assisted formation of nickel nanoparticles and their catalytic application to p-nitrophenol reduction. Cryst. Eng. Comm. 15, 560–569 (2013)

    CAS  Google Scholar 

  37. R. Kaur, C. Giordano, M. Gradzielski, S. Mehta, Synthesis of highly stable, water-dispersible copper nanoparticles as catalysts for nitrobenzene reduction. Chem. Asian J. 9, 189–198 (2014)

    CAS  PubMed  Google Scholar 

  38. Y. Liu, Y. Zhang, H. Ding, S. Xu, M. Li, F. Kong, Y. Luo, G. Li, Self-assembly of noble metallic spherical aggregates from monodisperse nanoparticles: their synthesis and pronounced SERS and catalytic properties. J. Mater. Chem. A 1, 3362–3371 (2013)

    CAS  Google Scholar 

  39. R. Das, S. Ghosh, I.H. Chowdhury, M.K. Naskar, Biogenic silver nanoparticle impregnated hollow mesoporous silicalite-1: an efficient catalyst for p-nitrophenol reduction. New J. Chem. 40, 50–53 (2016)

    CAS  Google Scholar 

  40. Z. Wang, C. Xu, G. Gao, X. Li, Facile synthesis of well-dispersed Pd–graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. RSC Adv. 4, 13644–13651 (2014)

    CAS  Google Scholar 

  41. M.H. Rashid, T.K. Mandal, Synthesis and catalytic application of nanostructured silver dendrites. J. Phys. Chem. C 111, 16750–16760 (2017)

    Google Scholar 

  42. H.L. Jiang, T. Akita, T. Ishida, M. Haruta, Q. Xu, Synergistic catalysis of Au@ Ag core−shell nanoparticles stabilized on metal−organic framework. J. Am. Chem. Soc. 133, 1304–1306 (2011)

    CAS  PubMed  Google Scholar 

  43. J.N. Xie, B. Yu, Z.H. Zhou, H.C. Fu, N. Wang, L.N. He, Copper (I)-based ionic liquid-catalyzed carboxylation of terminal alkynes with CO2 at atmospheric pressure. Tetrahedron Lett. 56, 7059–7062 (2015)

    CAS  Google Scholar 

  44. J. Shi, L. Zhang, N. Sun, D. Hu, Q. Shen, F. Mao, Q. Gao, W. Wei, Facile and rapid preparation of Ag@ZIF-8 for carboxylation of terminal alkynes with CO2 in mild conditions. ACS Appl. Mater. Interfaces 11, 28858–28867 (2019)

    CAS  PubMed  Google Scholar 

  45. K.C. Kemp, V. Chandra, M. Saleh, K.S. Kim, Reversible CO2 adsorption by an activated nitrogen doped graphene/polyaniline material. Nanotechnology 24, 235703 (2013)

    PubMed  Google Scholar 

  46. S. Li, J. Sun, Z. Zhang, R. Xie, X. Fang, M. Zhou, Carboxylation of terminal alkynes with CO2 using novel silver N-heterocyclic carbene complexes. Dalton Trans. 45, 10577–10584 (2016)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

SMI is thankful to the Department of Science and Technology, (DST-SERB project reference no. EMR/2016/004956), New Delhi, Govt. of India, the Board of Research in Nuclear Sciences Government of India, (BRNS project reference no. (37(2)/14/03/2018- BRNS/37003) and Council of Scientific and Industrial Research, (CSIR project reference no. 02(0284)2016/EMR-II dated 06/12/2016) New Delhi, Govt. of India, for providing financial support. AHC acknowledges to University of Kalyani, India for providing her URS fellowship. I.H.C. is thankful to CSIR, India (09/106 (0181) 2019 EMR-I) for her fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sk. Manirul Islam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazra Chowdhury, A., Hazra Chowdhury, I. & Islam, S.M. One-Pot Green Synthesis of AgNPs@RGO for Removal of Water Pollutant and Chemical Fixation of CO2 Under Mild Reaction Conditions. J Inorg Organomet Polym 30, 5270–5282 (2020). https://doi.org/10.1007/s10904-020-01643-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01643-1

Keywords

Navigation