Skip to main content

Advertisement

Log in

New lectins from Codium isthmocladum Vickers show unique amino acid sequence and antibiofilm effect on pathogenic bacteria

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Two new lectins from the green alga Codium isthmocladum (CiL-1 and CiL-2) were isolated. Both lectins could agglutinate human and rabbit erythrocytes. Galactosides and fetuin showed inhibitory effect on CiL-1. CiL-2 was inhibited by GalNAc and porcine stomach mucin. CiL-1 was a monomeric protein of 12 kDa, whereas CiL-2 showed 12 kDa in SDS-PAGE and an oligomeric state in gel filtration. MALDI-ToF-MS of CiL-1 revealed a molecular mass of 12.027 ± 5 Da, while CiL-2 showed molecular mass of 12.264 ± 5 Da. Ninety-eight percent of CiL-1’s primary structure was determined consisting of 112 residues placed in two repeated domains with approximately 60% of similarity. CiL-1 showed similarity with hypothetical proteins from aquatic pathogenic fungi. The N-terminal of CiL-2 showed no similarity to CiL-1 or to any known protein. The three-dimensional model of CiL-1 consists of four two-strand β-sheets disposed in a barrel-like arrangement, connected by loops of variable sizes, with a well-structured hydrophobic core. Binding site prediction suggests the existence of two independent monosaccharide binding sites in CiL-1. The lectins showed no antibacterial activity on Gram-positive and Gram-negative bacteria, but they were able to significantly inhibit the biofilm formation from Staphylococcus aureus and Staphylococcus epidermidis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ainouz IL, Sampaio AHJBM (1991) Screening of Brazilian marine algae for hemagglutinins. Bot Mar 34:211–214

  • Benevides N, Holanda M, Melo F, Pereira M, Monteiro A, Freitas AJBM (2001) Purification and partial characterization of the lectin from the marine green alga Caulerpa cupressoides (Vahl) C. Agardh. 44:17–22

    CAS  Google Scholar 

  • Berjanskii M, Liang Y, Zhou J, Tang P, Stothard P, Zhou Y, Cruz J, MacDonell C, Lin G, Lu P, Wishart DS (2010) PROSESS: a protein structure evaluation suite and server. 38 (suppl_2):W633-W640

  • Bohne A, Lang E, von der Lieth C-W (1998) W3-SWEET: carbohydrate modeling by internet. Molec Model Annu 4:33–43

    CAS  Google Scholar 

  • Carneiro RF, de Melo AA, de Almeida AS, Moura Rda M, Chaves RP, de Sousa BL, do Nascimento KS, Sampaio SS, Lima JP, Cavada BS, Nagano CS, Sampaio AH (2013) H-3, a new lectin from the marine sponge Haliclona caerulea: purification and mass spectrometric characterization. Int J Biochem Cell Biol 45:2864–2873

    CAS  PubMed  Google Scholar 

  • Carneiro RF, de Almeida AS, de Melo AA, de Alencar DB, de Sousa OV, Delatorre P, do Nascimento KS, Saker-Sampaio S, Cavada BS, Nagano CS, Sampaio AH (2015) A chromophore-containing agglutinin from Haliclona manglaris: purification and biochemical characterization. Int J Biol Macromol 72:1368–1375

    CAS  PubMed  Google Scholar 

  • Carneiro RF, Lima PHP Jr, Chaves RP, Pereira R, Pereira AL, de Vasconcelos MA, Pinheiro U, Teixeira EH, Nagano CS, Sampaio AH (2017) Isolation, biochemical characterization and antibiofilm effect of a lectin from the marine sponge Aplysina lactuca. Int J Biol Macromol 99:213–222

    CAS  PubMed  Google Scholar 

  • Chai W, Hounsell EF, Cashmore Gc, Rosankiewicz Jr, Bauer Cj, Feeney J, Feizi T, Lawson AMJEjob (1992) Neutral oligosaccharides of bovine submaxillary mucin: a combined mass spectrometry and 1H-NMR study. Eur J Biochem 203 (1-2):257-268

  • Chaves RP, da Silva SR, da Silva JPFA, Carneiro RF, de Sousa BL, Abreu JO, de Carvalho FCT, Rocha CRC, Farias WRL, de Sousa OV, Silva ALC, Sampaio AH, Nagano CS (2018) Meristiella echinocarpa lectin (MEL): a new member of the OAAH-lectin family. J Appl Phycol 30:2629–2638

    CAS  Google Scholar 

  • Ding S, Yan S, Qi S, Li Y, Yao YJ (2014) A protein structural classes prediction method based on PSI-BLAST profile. J Theor Biol 353:19–23

    CAS  PubMed  Google Scholar 

  • Edge A, Spiro RG (1987) Presence of an O-glycosidically linked hexasaccharide in fetuin. J Biol Chem 262:16135–16141

    CAS  PubMed  Google Scholar 

  • Fabregas J, Muñoz A, Llovo J, Carracedo A (1988) Purification and partial characterization of tomentine. an N-acetylglucosamine-specific lectin from the green alga Codium tomentosum (Huds.) Stackh. J Exp Mar Biol Ecol 124:21–30

    CAS  Google Scholar 

  • Han JW, Jung MG, Kim MJ, Yoon KS, Lee KP, Kim GH (2010) Purification and characterization of a D-mannose specific lectin from the green marine alga, Bryopsis plumosa. Phycol Rs 58:143–150

    CAS  Google Scholar 

  • Hirayama M, Ly BM, Hori K (2015) Purification, primary structure, and biological activity of the high-mannose N-glycan-specific lectin from cultivated Eucheuma denticulatum. J Appl Phycol 27:1657–1669

    PubMed  Google Scholar 

  • Holanda ML, Melo VM, Silva LM, Amorim RC, Pereira MG, Benevides NM (2005) Differential activity of a lectin from Solieria filiformis against human pathogenic bacteria. Braz J Med Biol Res 38:1769–1773

    CAS  PubMed  Google Scholar 

  • Jung MG, Lee KP, Choi H-G, Kang S-H, Klochkova TA, Han JW, Kim GH (2010) Characterization of carbohydrate combining sites of Bryohealin, an algal lectin from Bryopsis plumosa. J Appl Phycol 22:793–802

    CAS  Google Scholar 

  • Karlsson NG, Nordman H, Karlsson H, Carlstedt I, Hansson GC (1997) Glycosylation differences between pig gastric mucin populations: a comparative study of the neutral oligosaccharides using mass spectrometry. Biochem J 326:911–917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols 10:845–858

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:W526–W531

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim GH, Klochkova TA, Yoon KS, Song YS, Lee KP (2006) Purification and characterization of a lectin, bryohealin, involved in the protoplast formation of a marine green alga Bryopsis plumosa (Chlorophyta). J Phycol 42:86–95

    CAS  Google Scholar 

  • Kouokam JC, Lasnik AB, Palmer KE (2016) Studies in a murine model confirm the safety of griffithsin and advocate its further development as a microbicide targeting HIV-1 and other enveloped viruses. Viruses 8:311

    PubMed Central  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  PubMed  Google Scholar 

  • Liao W-R, Lin J-Y, Shieh W-Y, Jeng W-L, Huang R (2003) Antibiotic activity of lectins from marine algae against marine vibrios. J Ind Microbiol Biotechnol 30:433–439

    CAS  PubMed  Google Scholar 

  • Mori T, O'Keefe BR, Sowder RC 2nd, Bringans S, Gardella R, Berg S, Cochran P, Turpin JA, Buckheit RW Jr, McMahon JB, Boyd MR (2005) Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J Biol Chem 280:9345–9353

    CAS  PubMed  Google Scholar 

  • Mu J, Hirayama M, Sato Y, Morimoto K, Hori K (2017) A novel high-mannose specific lectin from the green alga Halimeda renschii exhibits a potent anti-influenza virus activity through high-affinity binding to the viral hemagglutinin. Mar Drugs 15

  • Otto M (2019) Staphylococcal biofilms. In: Fischetti VA, Novick RP, Ferretti JJ, Portnoy DA, Braunstein M, Rood JI (eds) Gram-positive pathogens, 3rd edn. ASM Press, Washington DC, pp 699–711

    Google Scholar 

  • Perez-Lorenzo S, Levy-Benshimol A, Gómez-Acevedo S (1998) Presencia de lectinas, taninos e inhibidores de proteasas en algas marinas de las costas Venezolanas. Acta Cient Venez 49:144–151

    CAS  PubMed  Google Scholar 

  • Praseptiangga D, Hirayama M, Hori K (2012) Purification, characterization, and cDNA cloning of a novel lectin from the green alga, Codium barbatum. Biosci Biotechnol Biochem 76:805–811

    CAS  PubMed  Google Scholar 

  • Rogers D, Flangu H (1991) Lectins from Codium species. Br Phycol J 26:95–96

    Google Scholar 

  • Rogers D, Swain L, Carpenter B, Critchley AT (1994) Binding of N-acetyl--D-galactosamine by lectins from species of the green marine algal genus, Codium. In: Van Driessche E, Fisher J, Beeckmans S, Bog-Hansen TC (eds), Lectins: Biology, Biochemistry, Clinical Biochemistry. Textop, Hellerup (Denmark) 10:162–165

    CAS  Google Scholar 

  • Romaniuk JA, Cegelski L (2015) Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Phil Trans Roy Soc B 370 (1679):20150024

  • Sampaio A, Rogers D, Barwell CJ (1998) Isolation and characterization of the lectin from the green marine alga Ulva lactuca L. Bot Mar 41:427–434

    CAS  Google Scholar 

  • Sato Y, Hirayama M, Morimoto K, Yamamoto N, Okuyama S, Hori K (2011) High mannose-binding lectin with preference for the cluster of alpha1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses. J Biol Chem 286:19446–19458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Savage AV, Donohue JJ, Koeleman CA, van den EIJNDEN DH (1990) Structural characterization of sialylated tetrasaccharides and pentasaccharides with blood group H and Lex activity isolated from bovine submaxillary mucin. Eur J Biochem 193:837–843

    CAS  PubMed  Google Scholar 

  • Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    CAS  PubMed  Google Scholar 

  • Singh RS, Walia AK (2018) Lectins from red algae and their biomedical potential. J Appl Phycol 30:1833–1858

    CAS  PubMed  Google Scholar 

  • Singh S, Singh SK, Chowdhury I, Singh R (2017) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 11:53–62

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soto SMJA (2014) Importance of biofilms in urinary tract infections: new therapeutic approaches. Adv Biol 2014:543974

    Google Scholar 

  • Teixeira E, Napimoga M, Carneiro V, De Oliveira T, Nascimento K, Nagano C, Souza J, Havt A, Pinto V, Gonçalves RB, Farias WRL, Saker-Sampaio S, Sampaio AH, Cavada BS (2007) In vitro inhibition of oral streptococci binding to the acquired pellicle by algal lectins. J Appl Microbiol 103:1001–1006

    CAS  PubMed  Google Scholar 

  • Terada D, Kawai F, Noguchi H, Unzai S, Hasan I, Fujii Y, Park SY, Ozeki Y, Tame JR (2016) Crystal structure of MytiLec, a galactose-binding lectin from the mussel Mytilus galloprovincialis with cytotoxicity against certain cancer cell types. Sci Rep 6:28344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Stokkum IH, Spoelder HJ, Bloemendal M, Van Grondelle R, Groen FC (1990) Estimation of protein secondary structure and error analysis from circular dichroism spectra. Anal Biochem 191:110–118

    PubMed  Google Scholar 

  • Vanderlei ES, Patoilo KK, Lima NA, Lima AP, Rodrigues JA, Silva LM, Lima ME, Lima V, Benevides NM (2010) Antinociceptive and anti-inflammatory activities of lectin from the marine green alga Caulerpa cupressoides. Int Immunopharmacol 10:1113–1118

    CAS  PubMed  Google Scholar 

  • Vasconcelos MA, Arruda FVS, Carneiro VA, Silva HC, Nascimento KS, Sampaio AH, Cavada B, Teixeira EH, Henriques M, Pereira MO (2014) Effect of algae and plant lectins on planktonic growth and biofilm formation in clinically relevant bacteria and yeasts. Biomed Res Int 2014:365272

    PubMed  PubMed Central  Google Scholar 

  • Volkamer A, Kuhn D, Grombacher T, Rippmann F, Rarey M (2012) Combining global and local measures for structure-based druggability predictions. J Chem Inf Model 52:360–372

    CAS  PubMed  Google Scholar 

  • Wang Y, Xiao J, Suzek TO, Zhang J, Wang J, Bryant SH (2009) PubChem: a public information system for analyzing bioactivities of small molecules. Nucleic Acids Res 37:W623–W633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Ma J, Peng J, Xu J (2013) Protein structure alignment beyond spatial proximity. Sci Rep 3:1448

    PubMed  PubMed Central  Google Scholar 

  • Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, Heer FT, de Beer TAP, Rempfer C, Bordoli L, Lepore R, Schwede T (2018) SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res 46:W296–W303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinf 54:5.6.1–5.6.37

    Google Scholar 

  • Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J-M, Tung C-H (2006) Protein structure database search and evolutionary classification. Nucleic Acids Res 34:3646–3659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Meth 12:7–8

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Centro de Tecnologias Estratégicas do Nordeste (CETENE) for providing equipment and technical support for experiments involving MALDI-ToF. The authors are grateful to Professor David Martin for helping in the English writing. A.H.S., and E.H.T. are senior investigators of CNPq. The authors dedicate this article to the memory of Professor David J. Rogers.

Funding

This work was supported by the Brazilian agencies CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico), FUNCAP (Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico), and FINEP (Financiadora de Estudos e Projetos).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso Shiniti Nagano.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1.

Determination of cysteine pairing by ESI-MS/MS. A) Mass spectra of the ion at m/z 670.26. B) Mass spectra of the ion at m/z 708.93. C) Mass spectra of the ion at m/z 878.33. D) Mass spectra of the ion at m/z 936.33. (PNG 251 kb)

High resolution image (TIF 273 kb)

Supplementary Figure 2.

CD spectra of C. isthmocladum lectins. (A) Far-UV CD spectra of CiL-1 (190-240 nm). (B) Far-UV CD spectra of CiL-2 (190-240 nm). (PNG 110 kb)

High resolution image (TIF 126 kb)

Supplementary Figure 3.

Ramachandran plot for CiL-1 structural model. (PNG 14 kb)

ESM 4

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carneiro, R.F., Duarte, P.L., Chaves, R.P. et al. New lectins from Codium isthmocladum Vickers show unique amino acid sequence and antibiofilm effect on pathogenic bacteria. J Appl Phycol 32, 4263–4276 (2020). https://doi.org/10.1007/s10811-020-02198-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02198-x

Keywords

Navigation