Skip to main content
Log in

Hierarchical severity grade classification of non-proliferative diabetic retinopathy

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

Curability of diabetic retinopathy (DR) abnormalities highly rely on regular monitoring, early-stage diagnosis and timely treatment. Detection and analysis of variation in eye images can help the patient to take the early action before progression of the disease. Vision loss can be effectively prevented by automated diagnostic system that assist the ophthalmologists who otherwise practice manual lesion detection processes which are tedious and time-consuming. This paper proposes a hierarchical severity level grading (HSG) system for the detection and classification of DR ailments. The retinal fundus images in the proposed HSG system are categorized as grade 0 (indicating Non-DR class) and DR severity grades 1, 2, 3 depending upon the number of anomalies; microaneurysms and haemorrhages in the fundus images. The challenge of retinal landmark segmentation, DR retinal discrimination and DR severity grading have been addressed in this work contributing to the novelty of the proposed approach. For non-DR and DR classification, the proposed system achieves an overall accuracy of 98.10% by SVM classifier and 100% by kNN classifier. Hierarchal discrimination into further grades of abnormalities resulted in accuracy values of 95.68% and 92.60% with SVM classifier using Gaussian kernel and, 97.90% and 95.30% employing fine kNN classifier. The HSG system demonstrates a clear improvement in accuracy with significantly less computational time comparative to the other state-of-the-art methods when applied to the MESSIDOR dataset. IDRiD dataset is also evaluated for performance validation of the proposed HSG system yielding a maximum of 94.00% classification accuracy using a kNN classifier with a computational time of 0.67 s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7

Similar content being viewed by others

References

  • Abbas Q, Fondon I, Sarmiento A, Jiménez S, Alemany P (2017) Automatic recognition of severity level for diagnosis of diabetic retinopathy using deep visual features. Med Biol Eng Comput 55(11):1959–1974

    Article  Google Scholar 

  • Acharya UR, Lim CM, Ng EYK, Chee C, Tamura T (2009) Computer-based detection of diabetes retinopathy stages using digital fundus images. Proc Inst Mech Eng 223(5):545–553

    Article  Google Scholar 

  • Al-Jarrah MA, Shatnawi H (2017) Non-proliferative diabetic retinopathy symptoms detection and classification using neural network. J Med Eng Technol 41(6):498–505

    Article  Google Scholar 

  • Aptel F, Denis P, Rouberol F, Thivolet C (2008) Screening of diabetic retinopathy: effect of field number and mydriasis on sensitivity and specificity of digital fundus photography. Diabetes Metab 34(3):290–293

    Article  Google Scholar 

  • Ashraf MN, Habib Z, Hussain M (2014) Texture feature analysis of digital fundus images for early detection of diabetic retinopathy. In: Proceedings of the 11th IEEE international conference on computer graphics, imaging and visualization (CGIV ’14). IEEE, pp 57–62

  • Bandyopadhyay S, Choudhury S, Latib SK, Kole DK, Giri C (2018) Gradation of diabetic retinopathy using KNN classifier by morphological segmentation of retinal vessels. In: International proceedings on advances in soft computing, intelligent systems and applications. Springer, Singapore, pp 189–198

  • Bhardwaj C, Jain S, Sood M (2018a) Appraisal of pre-processing techniques for automated detection of diabetic retinopathy. In: 2018 Fifth international conference on parallel, distributed and grid computing (PDGC). IEEE, pp 734–739

  • Bhardwaj C, Jain S, Sood M (2018b) Automated optical disc segmentation and blood vessel extraction for fundus images using ophthalmic image processing. In: International conference on advanced informatics for computing research. Springer, Singapore, pp 182–194

  • Bhardwaj C, Jain S, Sood M (2019) Automatic blood vessel extraction of fundus images employing fuzzy approach. Indones J Electr Eng Inform (IJEEI) 7(4):757–771

    Google Scholar 

  • Bhardwaj C, Jain S, Sood M (2020) Diabetic retinopathy lesion discriminative diagnostic system for retinal fundus images. Adv Biomed Eng 9:71–82

    Article  Google Scholar 

  • Clausi DA (2002) An analysis of co-occurrence texture statistics as a function of grey level quantization. Can J Remote Sens 28(1):45–62

    Article  Google Scholar 

  • Decencière E, Zhang X, Cazuguel G, Lay B, Cochener B, Trone C, Charton B (2014) Feedback on a publicly distributed image database: the Messidor database. Image Anal Stereol 33(3):231–234

    Article  Google Scholar 

  • Dupas B, Walter T, Erginary A (2010) Evaluation of automated fundus photograph analysis algorithms for detecting microaneurysms, haemorrhages and exudates, and of a computer assisted diagnostic system for grading diabetic retinopathy. Diabetes Metab 36(3):213–220

    Article  Google Scholar 

  • Gao Z, Li J, Guo J, Chen Y, Yi Z, Zhong J (2018) Diagnosis of diabetic retinopathy using deep neural networks. IEEE Access 7:3360–3370

    Article  Google Scholar 

  • Giancardo L, Meriaudeau F, Karnowski TP, Li Y, Garg S, Tobin KW Jr, Chaum E (2012) Exudate-based diabetic macular edema detection in fundus images using publicly available datasets. Med Image Anal 16(1):216–226

    Article  Google Scholar 

  • Goatman KA, Fleming AD, Philip S, Williams GJ, Olson JA, Sharp PF (2010) Detection of new vessels on the optic disc using retinal photographs. IEEE Trans Med Imaging 30(4):972–979

    Article  Google Scholar 

  • Habib MM, Welikala RA, Hoppe A, Owen CG, Rudnicka AR, Barman SA (2016) Microaneurysm detection in retinal images using an ensemble classifier. In: 2016 sixth international conference on image processing theory, tools and applications (IPTA). IEEE, pp 1–6

  • Habib MM, Welikala RA, Hoppe A, Owen CG, Rudnicka AR, Barman SA (2017) Detection of microaneurysms in retinal images using an ensemble classifier. Inform Med Unlocked 9:44–57

    Article  Google Scholar 

  • Harangi B, Toth J, Baran A, Hajdu A (2019) Automatic screening of fundus images using a combination of convolutional neural network and hand-crafted features. In: 2019 41st annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 2699–2702

  • Harini R, Sheela N (2016) Feature extraction and classification of retinal images for automated detection of diabetic retinopathy. In: Second international conference on cognitive computing and information processing (CCIP). IEEE, pp 1–4

  • Hoover AD, Kouznetsova V, Goldbaum M (2000) Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans Med Imaging 19(3):203–210

    Article  Google Scholar 

  • Inbarathi R, Karthikeyan R (2014) Detection of retinal hemorrhage in fundus images by classifying the splat features using SVM. Int J Innov Res Sci Eng Technol 3:1979–1986

    Google Scholar 

  • Kahai P, Namuduri KR, Thompson H (2006) A decision support framework for automated screening of diabetic retinopathy. Int J Biomed Imaging 2006(45806):1–8

    Article  Google Scholar 

  • Karthikeyan R, Alli P (2018) Feature selection and parameters optimization of support vector machines based on hybrid glowworm swarm optimization for classification of diabetic retinopathy. J Med Syst 42(10):195

    Article  Google Scholar 

  • Kauppi T, Kalesnykiene V, Kamarainen JK, Lensu L, Sorri I, Raninen A, Pietilä J et al (2007) The diaretdb1 diabetic retinopathy database and evaluation protocol. In: BMVC, vol 1, pp 1–10

  • Koh JE, Ng EY, Bhandary SV, Laude A, Acharya UR (2018) Automated detection of retinal health using PHOG and SURF features extracted from fundus images. Appl Intell 48(5):1379–1393

    Google Scholar 

  • Lachure J, Deorankar AV, Lachure S, Gupta S, Jadhav R (2015) Diabetic Retinopathy using morphological operations and machine learning. In: 2015 IEEE international advance computing conference (IACC). IEEE, pp 617–622

  • Morales S, Engan K, Naranjo V, Colomer A (2015) Retinal disease screening through local binary patterns. IEEE J Biomed Health Inform 21(1):184–192

    Article  Google Scholar 

  • Navarro PJ, Alonso D, Stathis K (2016) Automatic detection of microaneurysms in diabetic retinopathy fundus images using the L* a* b color space. JOSA A 33(1):74–83

    Article  Google Scholar 

  • Niemeijer M, Staal J, van Ginneken B, Loog M, Abramoff MD (2004) Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Medical imaging 2004: image processing, vol 5370. International Society for Optics and Photonics, pp 648–656

  • Porwal P, Pachade S, Kamble R, Kokare M, Deshmukh G, Sahasrabuddhe V, Meriaudeau F (2018) Indian diabetic retinopathy image dataset (idrid): a database for diabetic retinopathy screening research. Data 3(3):25

    Article  Google Scholar 

  • Rahim SS, Palade V, Shuttleworth J, Jayne C (2016) Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing. Brain Inform 3(4):249–267

    Article  Google Scholar 

  • Roychowdhury S, Koozekanani DD, Parhi KK (2012) Screening fundus images for diabetic retinopathy. In: 2012 conference record of the forty sixth asilomar conference on signals, systems and computers (ASILOMAR). IEEE, pp 1641–1645

  • Roychowdhury S, Koozekanani DD, Parhi KK (2013) DREAM: diabetic retinopathy analysis using machine learning. IEEE J Biomed Health Inform 18(5):1717–1728

    Article  Google Scholar 

  • Selvathi D, Prakash NB, Balagopal N (2012) Automated detection of diabetic retinopathy for early diagnosis using feature extraction and support vector machine. Int J Emerg Technol Adv Eng 2(11):103–108

    Google Scholar 

  • Seoud L, Chelbi J, Cheriet F (2015) Automatic grading of diabetic retinopathy on a public database

  • Seoud L, Hurtut T, Chelbi J, Cheriet F, Langlois JMP (2016) Red lesion detection using dynamic shape features for diabetic retinopathy screening. IEEE Trans Med Imaging 35(4):1116–1126

    Article  Google Scholar 

  • Sisodia DS, Nair S, Khobragade P (2017) Diabetic retinal fundus images: preprocessing and feature extraction for early detection of diabetic retinopathy. Biomed Pharmacol J 10(2):615–626

    Article  Google Scholar 

  • Somasundaram SK, Alli P (2017) A machine learning ensemble classifier for early prediction of diabetic retinopathy. J Med Syst 41(12):201

    Article  Google Scholar 

  • Sood M (2017) Performance analysis of classifiers for seizure diagnosis for single channel EEG data. Biomed Pharmacol J 10(2):795–803

    Article  Google Scholar 

  • Staal J, Abràmoff MD, Niemeijer M, Viergever MA, Van Ginneken B (2004) Ridge-based vessel segmentation in color images of the retina. IEEE Trans Med Imaging 23(4):501–509

    Article  Google Scholar 

  • Thammastitkul A, Uyyanonvara B (2016) Diabetic Retinopathy Stages Identification Using Retinal Images, p 20

  • Vaishnavi J, Ravi S, Devi MA, Punitha S (2016) Automatic diabetic assessment for diabetic retinopathy using support vector machines. IJCTA 9(7):3135–3145

    Google Scholar 

  • Venkatesan R, Chandakkar P, Li B, Li HK (2012) Classification of diabetic retinopathy images using multi-class multiple-instance learning based on color correlogram features. In: 2012 annual international conference of the IEEE engineering in medicine and biology society. IEEE, pp 1462–1465

  • Wang Z, Yang J (2018) Diabetic retinopathy detection via deep convolutional networks for discriminative localization and visual explanation. In: Workshops at the thirty-second AAAI conference on artificial intelligence

  • Wang S, Tang HL, Hu Y, Sanei S, Saleh GM, Peto T (2016) Localizing microaneurysms in fundus images through singular spectrum analysis. IEEE Trans Biomed Eng 64(5):990–1002

    Article  Google Scholar 

  • Wilkinson CP, Ferris FL III, Klein RE, Lee PP, Agardh CD, Davis M, Group, G. D. R. P. et al (2003) Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9):1677–1682

    Article  Google Scholar 

  • Wulandari CD, Wibowo SA, Novamizanti L (2019) Classification of diabetic retinopathy using statistical region merging and convolutional neural network. In: IEEE Asia pacific conference on wireless and mobile (APWiMob). IEEE, pp 94–98

  • Xiao D, Bhuiyan A, Frost S, Vignarajan J, Tay-Kearney ML, Kanagasingam Y (2019) Major automatic diabetic retinopathy screening systems and related core algorithms: a review. Mach Vis Appl 30(3):423–446

    Article  Google Scholar 

  • Yen GG, Leong WF (2008) A sorting system for hierarchical grading of diabetic fundus images: a preliminary study. IEEE Trans Inf Technol Biomed 12(1):118–130

    Article  Google Scholar 

  • You J, Li Q, Guo Z (2016) Automatic mobile retinal microaneurysm detection using handheld fundus camera via cloud computing. Electron Imaging 2016(11):1–5

    Article  Google Scholar 

  • Yu F, Sun J, Li A, Cheng J, Wan C, Liu J (2017) Image quality classification for DR screening using deep learning. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 664–667

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charu Bhardwaj.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, C., Jain, S. & Sood, M. Hierarchical severity grade classification of non-proliferative diabetic retinopathy. J Ambient Intell Human Comput 12, 2649–2670 (2021). https://doi.org/10.1007/s12652-020-02426-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12652-020-02426-9

Keywords

Navigation