Skip to main content
Log in

Surface functionalization methodologies on activated carbons and their benzene adsorption

  • Original Article
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

The present work reports the effect of different functionalization methodologies on surface modification of porous carbon and its efficacy for benzene adsorption. The virgin and surface-modified adsorbents were characterized by FTIR, N2 sorption analysis, SEM, and Boehm titration. The adsorption isotherms were measured at different temperatures using a highly sensitive magnetic suspension microbalance. At lower benzene concentration, the virgin carbon was found to possess reasonable adsorption capacity, while at higher benzene concentration, the surface-modified carbon tends to perform better. The maximum benzene adsorption capacity at 25 °C and vapor pressure of 90 mbar is as follows: 467 mg/g (NORIT-AC), 227 mg/g (AC-APS (1 M)), 388 mg/g (Norit-AC-HT), 492 mg/g (AC-HNO3), and 531 mg/g (AC-H2SO4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim M-J, Kim KH, Kim Y, Yoo B, Lee Y-S (2020) Volatile organic compounds (VOCs) removal using ACFs with electroless plating CuO as catalysts. Carbon Lett 65:1–8

    Google Scholar 

  2. Shim J-W, Park S-J, Ryu SK (2001) Effect of modification with HNO3 and NaOH on metal adsorption by pitch-based activated carbon fibers. Carbon 39:1635–1642

    Article  CAS  Google Scholar 

  3. Bai BC, Kim EA, Lee CW, Lee Y-S, Im JS (2015) Effects of surface chemical properties of activated carbon fibers modified by liquid oxidation for CO2 adsorption. Appl Surf Sci 353:158–164

    Article  CAS  Google Scholar 

  4. Cho S, Yu HR, Choi TH, Jung MJ, Lee YS (2018) Surface functionalization and CO2 uptake on carbon molecular sieves: experimental observation and theoretical study. Appl Surf Sci 447:8–14

    Article  CAS  Google Scholar 

  5. Jung J-Y, Yu H-R, In SJ, Choi YC, Lee Y-S (2013) Water vapor adsorption capacity of thermally fluorinated carbon molecular sieves for CO2 capture. J Nano Mater. 2013:705107. https://doi.org/10.1155/2013/705107

    Article  CAS  Google Scholar 

  6. Lu W, Chung DDL (1997) Mesoporous activated carbon filaments. Carbon 35:427–430

    Article  CAS  Google Scholar 

  7. Lisovskii A, Semiat R, Aharoni C (1997) Adsorption of sulfur dioxide by active carbon treated by nitric acid: I. Effect of the treatment on adsorption of SO2 and extractability of the acid formed. Carbon 35:1639–1643

    Article  CAS  Google Scholar 

  8. Donnet JB, Papirer E, Dauksch H (1974) Carbon fibers—their place in modern technology. The Plastics Institute, London, p 58

    Google Scholar 

  9. Kutics K, Suzuki M (1990) 2nd Korea-Japan Symposium on Sep. Seoul, TSeolech., p 395

    Google Scholar 

  10. Pittman CU, He GR, Wu B, Gardner SD (1997) Chemical modification of carbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethylenepentamine. Carbon 35:317–331

    Article  CAS  Google Scholar 

  11. Hefti M, Marx D, Joss L, Mazzotti M (2015) Adsorption equilibrium of binary mixtures of carbon dioxide and nitrogen on zeolites ZSM-5 and 13X. Microporous Mesoporous Mater 215:215–228

    Article  CAS  Google Scholar 

  12. Moreno-Castilla C, Carrasco-Marin F, Mueden A (1997) The creation of acid carbon surfaces by treatment with (NH4)2S2O8. Carbon 35:1619–1626

    Article  CAS  Google Scholar 

  13. Moreno-Castilla C, Ferro-Garcia MA, Joly JP, Bautista-Toledo I, Carrasco-Marin F, Rivera-Utrilla J (1995) Activated carbon surface modifications by nitric acid, hydrogen peroxide, and ammonium peroxydisulfate treatments. Langmuir 11:4386–4392

    Article  CAS  Google Scholar 

  14. Yang RT (2003) Adsorbents: fundamentals and applications. Wiley Interscience, New York

    Book  Google Scholar 

  15. Kim KH, Park M-S, Jung M-J, Lee Y-S (2015) Influence of textural structure by heat-treatment on electrochemical properties of pitch-based activated carbon fiber. Appl Chem Eng 26:598–603

    Article  CAS  Google Scholar 

  16. Julien F, Baudu M, Mazet M (1998) Relationship between chemical and physical surface properties of activated carbon. Water Res 32:3414–3424

    Article  CAS  Google Scholar 

  17. Slasli AM, Jorge M, Stoeckli F, Seaton NA (2003) Water adsorption by activated carbons in relation to their microporous structure. Carbon 41:479–486

    Article  CAS  Google Scholar 

  18. Slasli AM, Jorge M, Stoeckli F, Seaton NA (2004) Modelling of water adsorption by activated carbons: effects of microporous structure and oxygen content. Carbon 42:1947–1952

    Article  CAS  Google Scholar 

  19. Przepiorski J (2006) Activated carbon surfaces in environmental remediation. Elsevier, Amsterdam

    Google Scholar 

  20. Zhang Y, Jiang H, Wang H, Wang C (2020) Separation of hazardous polyvinyl chloride from waste plastics by flotation assisted with surface modification of ammonium persulfate: process and mechanism. J Hazard Mater 389:121918

    Article  CAS  Google Scholar 

  21. Shamsijazeyi H, Kaghazchi T (2010) Investigation of nitric acid treatment of activated carbon for enhanced aqueous mercury removal. J Ind Eng Chem 16:852–858

    Article  CAS  Google Scholar 

  22. Gong H, Kim ST, Lee JD, Yim S (2013) Simple quantification of surface carboxylic acids on chemically oxidized multi-walled carbon nanotubes. Appl Surf Sci 266:219–224

    Article  CAS  Google Scholar 

  23. Villacanas F, Pereira MFR, Orfao JJM, Figueiredo JL (2006) Adsorption of simple aromatic compounds on activated carbons. J Colloid Interface Sci 293:128–136

    Article  CAS  Google Scholar 

  24. de Jong KP (2006) Support materials and characterization tools for nanostructured catalysts. Oil Gas Sci Technol Rev 61(527):534

    Google Scholar 

  25. Opatokun SA, Prabhu A, Shoaibi AA, Srinivasakannan C, Strezov V (2017) Food wastes derived adsorbents for carbon dioxide and benzene gas sorption. Chemosphere 168:326–332

    Article  CAS  Google Scholar 

  26. Pradhan BK, Sandle NK (1999) Effect of different oxidizing agent treatments on the surface properties of activated carbons. Carbon 37:1323–1332

    Article  CAS  Google Scholar 

  27. El-Hendawy ANA (2003) Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 41:713–722

    Article  CAS  Google Scholar 

  28. Macias-Garcia A, Diaz-Diez MA, Cuerda-Correa EM, Olivares-Marin M, Ganan-Gomez J (2006) Study of the pore size distribution and fractal dimension of HNO3-treated activated carbons. Appl Surf Sci 252:5972–5975

    Article  CAS  Google Scholar 

  29. Rumi C, Takanori W, Katsutoshi I, Hom NL, Toshio T, Mitsunori Y (2009) Chemical modification of carbonized wheat and barley straw using HNO3 and the adsorption of Cr(III). J Hazard Mater 167:319–324

    Article  Google Scholar 

  30. Jabar JM, Odusote YA (2020) Removal of cibacron blue 3G-A (CB) dye from aqueous solution using chemo-physically activated biochar from oil palm empty fruit bunch fiber. Arab J Chem 13:5417–5429

    Article  CAS  Google Scholar 

  31. Jabar JM, Odusote YA, Alabi KA, Ahmed IB (2020) Kinetics and mechanisms of congo-red dye removal from aqueous solution using activated Moringa oleifera seed coat as adsorbent. Appl Water Sci 10:136

    Article  CAS  Google Scholar 

  32. Kawasaki N, Kinoshita H, Oue T, Nakamura T, Tanada S (2004) Study on adsorption kinetic of aromatic hydrocarbons onto activated carbon in gaseous flow method. J Colloid Interface Sci 275:40–43

    Article  CAS  Google Scholar 

  33. Coughlin RW, Ezra FS, Tan RN (1968) Influence of chemisorbed oxygen in adsorption onto carbon from aqueous solution. J Colloid Interface Sci 28:386–396

    Article  CAS  Google Scholar 

  34. Fulazzaky MA, Khamidun MH, Omar R (2013) Understanding of mass transfer resistance for the adsorption of solute onto porous material from the modified mass transfer factor models. Chem Eng J 228:1023–1029

    Article  CAS  Google Scholar 

  35. Thamri A, Baccar H, Struzzi C, Bittencourt C, Abdelghani A, Llobet E (2016) MHDA-functionalized multiwall carbon nanotubes for detecting non-aromatic VOCs. Sci Rep 6:35130

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thanks the Gas Processing and Materials Science Research Centre (GRC-003), Khalifa University (formerly The Petroleum Institute) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhu Azhagapillai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azhagapillai, P., Al Shoaibi, A. & Chandrasekar, S. Surface functionalization methodologies on activated carbons and their benzene adsorption. Carbon Lett. 31, 419–426 (2021). https://doi.org/10.1007/s42823-020-00170-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00170-w

Keywords

Navigation