Skip to main content
Log in

Dirichlet–Neumann waveform relaxation methods for parabolic and hyperbolic problems in multiple subdomains

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a new waveform relaxation variant of the Dirichlet–Neumann algorithm is introduced for general parabolic problems as well as for the second-order wave equation for decompositions with multiple subdomains. The method is based on a non-overlapping decomposition of the domain in space, and the iteration involves subdomain solves in space-time with transmission conditions of Dirichlet and Neumann type to exchange information between neighboring subdomains. Regarding the convergence of the algorithm, two main results are obtained when the time window is finite: for the heat equation, the method converges superlinearly, whereas for the wave equation, it converges after a finite number of iterations. The analysis is based on Fourier–Laplace transforms and detailed kernel estimates, which reveals the precise dependence of the convergence on the size of the subdomains and the time window length. Numerical experiments are presented to illustrate the performance of the algorithm and to compare its convergence behaviour with classical and optimized Schwarz Waveform Relaxation methods. Experiments involving heterogeneous coefficients and non-matching time grids, which are not covered by the theory, are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. For simplicity, we do not explicitly write the initial and boundary conditions coming from the underlying equation.

  2. This indicates that one should cut long time intervals into shorter time windows and then apply the algorithm time window by time window, like in most WR methods.

References

  1. Bennequin, D., Gander, M.J., Gouarin, L., Halpern, L.: Optimized Schwarz waveform relaxation for advection reaction diffusion equations in two dimensions. Numer. Math. 134(3), 513–567 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bennequin, D., Gander, M.J., Halpern, L.: A homographic best approximation problem with application to optimized Schwarz waveform relaxation. Math. Comput. 78(265), 185–223 (2009). https://doi.org/10.1090/S0025-5718-08-02145-5

    Article  MathSciNet  MATH  Google Scholar 

  3. Bjørstad, P.E., Widlund, O.B.: Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numer. Anal. 23(6), 1097–1120 (1986). https://doi.org/10.1137/0723075

    Article  MathSciNet  MATH  Google Scholar 

  4. Börgers, C.: The Neumann–Dirichlet domain decomposition method with inexact solvers on the subdomains. Numer. Math. 55(2), 123–136 (1989)

    Article  MathSciNet  Google Scholar 

  5. Bourgat, J.F., Glowinski, R., Le Tallec, P., Vidrascu, M.: Variational formulation and algorithm for trace operator in domain decomposition calculations. In: Domain Decomposition Methods (Los Angeles. CA, 1988), pp. 3–16. SIAM, Philadelphia, PA (1989)

  6. Bramble, J.H., Pasciak, J.E., Schatz, A.H.: An iterative method for elliptic problems on regions partitioned into substructures. Math. Comput. 46(174), 361–369 (1986). https://doi.org/10.2307/2007981

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlenzoli, C., Quarteroni, A.: Adaptive domain decomposition methods for advection–diffusion problems. In: Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial Differential Equations, pp. 165–186. Springer (1995)

  8. Claeys, X., Hiptmair, R.: Electromagnetic scattering at composite objects: a novel multi-trace boundary integral formulation. ESAIM Math. Model. Numer. Anal. 46(6), 1421–1445 (2012)

    Article  MathSciNet  Google Scholar 

  9. De Roeck, Y.H., Le Tallec, P.: Analysis and test of a local domain-decomposition preconditioner. In: Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations (Moscow, 1990), pp. 112–128. SIAM, Philadelphia, PA (1991)

  10. Discacciati, M., Quarteroni, A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6(2–3), 93–103 (2004)

    Article  MathSciNet  Google Scholar 

  11. Dolean, V., Gander, M.J.: Multitrace formulations and Dirichlet–Neumann algorithms. In: Domain Decomposition Methods in Science and Engineering XXII, pp. 147–155. Springer (2016)

  12. Funaro, D., Quarteroni, A., Zanolli, P.: An iterative procedure with interface relaxation for domain decomposition methods. SIAM J. Numer. Anal. 25(6), 1213–1236 (1988). https://doi.org/10.1137/0725069

    Article  MathSciNet  MATH  Google Scholar 

  13. Gander, M.J.: 50 years of time parallel time integration. In: Multiple Shooting and Time Domain Decomposition Methods, pp. 69–113. Springer (2015)

  14. Gander, M.J., Halpern, L.: Absorbing boundary conditions for the wave equation and parallel computing. Math. Comput. 74(249), 153–176 (2005). https://doi.org/10.1090/S0025-5718-04-01635-7

    Article  MathSciNet  MATH  Google Scholar 

  15. Gander, M.J., Halpern, L.: Optimized Schwarz waveform relaxation for advection reaction diffusion problems. SIAM J. Numer. Anal. 45(2), 666–697 (2007). https://doi.org/10.1137/050642137

    Article  MathSciNet  MATH  Google Scholar 

  16. Gander, M.J., Halpern, L., Nataf, F.: Optimal Schwarz waveform relaxation for the one dimensional wave equation. SIAM J. Numer. Anal. 41(5), 1643–1681 (2003). https://doi.org/10.1137/S003614290139559X

    Article  MathSciNet  MATH  Google Scholar 

  17. Gander, M.J., Japhet, C.: An algorithm for non-matching grid projections with linear complexity. In: Bercovier, M., Gander, M.J., Keyes, D., Widlund, O. (eds.) Domain Decomposition in Science and Engineering XVIII. Springer, Berlin (2008)

    Google Scholar 

  18. Gander, M.J., Japhet, C.: Algorithm 932: PANG: software for nonmatching grid projections in 2D and 3D with linear complexity. ACM Trans. Math. Softw. 40(1), 25 (2013). https://doi.org/10.1145/2513109.2513115. Art. 6

    Article  MathSciNet  MATH  Google Scholar 

  19. Gander, M.J., Japhet, C., Maday, Y., Nataf, F.: A new cement to glue nonconforming grids with Robin interface conditions: the finite element case. In: Domain Decomposition Methods in Science and Engineering, pp. 259–266. Springer (2005)

  20. Gander, M.J., Kwok, F., Mandal, B.C.: Dirichlet–Neumann and Neumann–Neumann waveform relaxation algorithms for parabolic problems. Electron. Trans. Numer. Anal. 45, 424–456 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Gander, M.J., Kwok, F., Mandal, B.C.: Dirichlet–Neumann and Neumann–Neumann waveform relaxation for the wave equation. In: Dickopf, T., Gander, M.J., Halpern, L., Krause, R., Pavarino, L. (eds.) Domain Decomposition Methods in Science and Engineering XXII, Lecture Notes in Computational Science and Engineering, pp. 501–509. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-18827-0_51

  22. Gander, M.J., Stuart, A.M.: Space-time continuous analysis of waveform relaxation for the heat equation. SIAM J. Sci. Comput. 19(6), 2014–2031 (1998). https://doi.org/10.1137/S1064827596305337

    Article  MathSciNet  MATH  Google Scholar 

  23. Gander, M.J., Zhao, H.: Overlapping Schwarz waveform relaxation for the heat equation in \(n\) dimensions. BIT 42(4), 779–795 (2002). https://doi.org/10.1023/A:1021900403785

    Article  MathSciNet  MATH  Google Scholar 

  24. Giladi, E., Keller, H.: Space time domain decomposition for parabolic problems. Technical report 97-4, Center for research on parallel computation CRPC, Caltech (1997)

  25. Gorb, Y., Kurzanova, D.: Heterogeneous domain decomposition method for high contrast dense composites. J. Comput. Appl. Math. 337, 135–149 (2018)

    Article  MathSciNet  Google Scholar 

  26. Hiptmair, R., Jerez-Hanckes, C.: Multiple traces boundary integral formulation for helmholtz transmission problems. Adv. Comput. Math. 37(1), 39–91 (2012). https://doi.org/10.1007/s10444-011-9194-3

    Article  MathSciNet  MATH  Google Scholar 

  27. Hoang, T.T.P.: Space-time domain decomposition methods for mixed formulations of flow and transport problems in porous media. Ph.D. thesis, University Paris 6, France (2013)

  28. Hoang, T.T.P., Jaffré, J., Japhet, C., Kern, M., Roberts, J.E.: Space-time domain decomposition methods for diffusion problems in mixed formulations. SIAM J. Numer. Anal. 51(6), 3532–3559 (2013)

    Article  MathSciNet  Google Scholar 

  29. Jiang, Y.L., Song, B.: Coupling parareal and Dirichlet–Neumann/Neumann–Neumann waveform relaxation methods for the heat equation. In: International Conference on Domain Decomposition Methods XXIV, pp. 405–413. Springer (2018)

  30. Krause, R.H., Wohlmuth, B.I.: A Dirichlet-Neumann type algorithm for contact problems with friction. Comput. Vis. Sci. 5(3), 139–148 (2002)

    Article  MathSciNet  Google Scholar 

  31. Kwok, F.: Neumann–Neumann waveform relaxation for the time-dependent heat equation. In: Erhel, J., Gander, M.J., Halpern, L., Pichot, G., Sassi, T., Widlund, O.B. (eds.) Domain Decomposition in Science and Engineering XXI, vol. 98, pp. 189–198. Springer, Berlin (2014)

    Chapter  Google Scholar 

  32. Le Tallec, P., De Roeck, Y.H., Vidrascu, M.: Domain decomposition methods for large linearly elliptic three-dimensional problems. J. Comput. Appl. Math. 34(1), 93–117 (1991). https://doi.org/10.1016/0377-0427(91)90150-I

    Article  MathSciNet  MATH  Google Scholar 

  33. Lemarié, F., Debreu, L., Blayo, E.: Toward an optimized global-in-time schwarz algorithm for diffusion equations with discontinuous and spatially variable coefficients, part 1: the constant coefficients case. Electron. Trans. Numer. Anal 40, 148–169 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Lemarié, F., Debreu, L., Blayo, E.: Toward an optimized global-in-time schwarz algorithm for diffusion equations with discontinuous and spatially variable coefficients, part 2: the variable coefficients case. Electron. Trans. Numer. Anal 40, 170–186 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Maier, I., Haasdonk, B.: A Dirichlet-Neumann reduced basis method for homogeneous domain decomposition problems. Appl. Numer. Math. 78, 31–48 (2014)

    Article  MathSciNet  Google Scholar 

  36. Mandal, B.C.: Convergence analysis of substructuring waveform relaxation methods for space-time problems and their application to optimal control problems. Ph.D. thesis, University of Geneva (2014). http://archive-ouverte.unige.ch/unige:46146

  37. Mandal, B.C.: A time-dependent Dirichlet–Neumann method for the heat equation. In: Erhel, J., Gander, M.J., Halpern, L., Pichot, G., Sassi, T., Widlund, O.B. (eds.) Domain Decomposition in Science and Engineering XXI, vol. 98, pp. 467–475. Springer, Berlin (2014)

    Chapter  Google Scholar 

  38. Mandal, B.C.: Neumann–Neumann waveform relaxation algorithm in multiple subdomains for hyperbolic problems in 1d and 2d. Numer. Methods Partial Differ. Equ. (2016). https://doi.org/10.1002/num.22112

    Article  MATH  Google Scholar 

  39. Marini, L.D., Quarteroni, A.: An iterative procedure for domain decomposition methods: a finite element approach. SIAM I, 129–143 (1988)

    MathSciNet  MATH  Google Scholar 

  40. Marini, L.D., Quarteroni, A.: A relaxation procedure for domain decomposition methods using finite elements. Numer. Math. 55(5), 575–598 (1989). https://doi.org/10.1007/BF01398917

    Article  MathSciNet  MATH  Google Scholar 

  41. Martini, I., Haasdonk, B.: Output error bounds for the Dirichlet–Neumann reduced basis method. In: Numerical mathematics and advanced applications-ENUMATH 2013, pp. 437–445. Springer (2015)

  42. Monge, A., Birken, P.: On the convergence rate of the Dirichlet–Neumann iteration for unsteady thermal fluid–structure interaction. Comput. Mech. 62(3), 525–541 (2018)

    Article  MathSciNet  Google Scholar 

  43. Monge, A., Birken, P.: A multirate neumann-neumann waveform relaxation method for heterogeneous coupled heat equations. SIAM J. Sci. Comput. 41(5), S86–S105 (2019)

    Article  MathSciNet  Google Scholar 

  44. Monge, A., Birken, P.: A time-adaptive Dirichlet–Neumann waveform relaxation method for coupled heterogeneous heat equations. PAMM 19(1), e201900206 (2019)

    Article  Google Scholar 

  45. Monge, A., Birken, P.: A time adaptive multirate Neumann–Neumann waveform relaxation method for thermal fluid-structure interaction. In: Domain Decomposition Methods in Science and Engineering XXV. Springer (2020) (to appear)

  46. Oberhettinger, F., Badii, L.: Tables of Laplace Transforms. Springer, New York (1973)

    Book  Google Scholar 

  47. Ong, B.W., Mandal, B.C.: Pipeline implementations of Neumann–Neumann and Dirichlet–Neumann waveform relaxation methods. Numer. Algoritm. 78, 1–20 (2018)

    Article  MathSciNet  Google Scholar 

  48. Toselli, A., Widlund, O.: Domain Decomposition Methods—Algorithms and Theory, Springer Series in Computational Mathematics, vol. 34. Springer, Berlin (2005). https://doi.org/10.1007/b137868

Download references

Acknowledgements

We thank the editors and the anonymous referees for their valuable and constructive comments, which greatly improved the quality of our paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bankim C. Mandal.

Additional information

Communicated by Daniel Kressner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

For equal subdomains, with subdomain size h, we can deduce a better estimate:

$$\begin{aligned} {\displaystyle \max _{1\le i\le 2m}}\parallel w_{i}^{k}\parallel _{L^{\infty }(0,T)}\le \left( \min \left\{ 2m-1,Q(h,\nu ,T)\right\} \right) ^{k}{{\,\mathrm{erfc}\,}}\left( \frac{kh}{2\sqrt{\nu T}}\right) {\displaystyle \max _{1\le i\le 2m}}\parallel w_{i}^{0}\parallel _{L^{\infty }(0,T)}, \end{aligned}$$

where \(Q(h,\nu ,T):=2\,\mathrm{erfc}\left( \frac{h}{2\sqrt{\nu T}}\right) +\sum _{i=0}^{\infty }2^{i+1}\mathrm{erfc}\left( \frac{ih}{2\sqrt{\nu T}}\right) \).

Here is an outline of the proof: For equal-length subdomains we have \(h_{i}=h\) for \(i=1,\ldots ,2m+1\), so that \(\gamma _{i}=\gamma ,\sigma _{i}=\sigma \) and \(\gamma _{i,j}=1,\sigma _{i,j}=0\) for all ij in (3.10). Therefore, we derive for \(i=1\) the recurrence.

$$\begin{aligned} {\hat{v}}_{1}^{k} \!\!= & {} \!\!\frac{1}{\gamma }{\hat{v}}_{1}^{k-1}-\left( 1-\frac{1}{\gamma ^{2}} \right) {\hat{v}}_{2}^{k-1}-\cdots -\frac{1}{\gamma ^{m-3}} \left( 1-\frac{1}{\gamma ^{2}}\right) {\hat{v}}_{m-1}^{k-1} -\frac{1}{\gamma ^{m-2}}{\hat{v}}_{m}^{k-1}+\frac{1}{\gamma ^{m-1}} {\hat{v}}_{m+1}^{k-1}\nonumber \\ \!\!=: & {} \!\! \sum _{i=1}^{m+1}{\hat{q}}_{i}{\hat{v}}_{i}^{k-1}. \end{aligned}$$
(A.1)

Note that the estimate from Theorem 2.1 also holds in this case with \(h_{\max }=h_{m+1}=h\):

$$\begin{aligned} {\displaystyle \max _{1\le i\le 2m}}\parallel w_{i}^{k}\parallel _{L^{\infty }(0,T)}\le \left( 2m-1\right) ^{k}{{\,\mathrm{erfc}\,}}\left( \frac{kh}{2\sqrt{\nu T}}\right) {\displaystyle \max _{1\le i\le 2m}}\parallel w_{i}^{0}\parallel _{L^{\infty }(0,T)}. \end{aligned}$$
(A.2)

We now present a different estimate starting from (A.1). By back transforming into the time domain we obtain \(v_{1}^{k}(t)=\sum _{i=1}^{m+1}\left( q_{i}*v_{i}^{k-1}\right) (t).\) Part 3 of Result 1 yields

$$\begin{aligned} \Vert v_{1}^{k}\Vert _{L^{\infty }(0,T)}\le & {} \sum _{i=1}^{m+1}\Vert v_{i}^{k-1} \Vert _{L^{\infty }(0,T)}\int _{0}^{T}\!|q_{i}(\tau )|d\tau \nonumber \\\le & {} {\displaystyle \max _{1\le i\le m+1}}\parallel v_{i}^{k-1}\parallel _{L^{\infty }(0,T)}\sum _{i=1}^{m+1}\int _{0}^{T} \!|q_{i}(\tau )|d\tau . \end{aligned}$$
(A.3)

Set \(f_{k}(t):={\mathscr {L}}^{-1}\left( \frac{1}{\gamma ^{k}}\right) \). Since \(\lim _{s\rightarrow 0+}\left| 1-\frac{1}{\gamma ^{2}}\right| \le 2\), we have from (A.3)

$$\begin{aligned} \sum _{i=1}^{m+1}\int _{0}^{T}|q_{i}(\tau )|d\tau \le \int _{0}^{T} \left( f_{1}(t)+2+2f_{1}(t)+\cdots +2f_{m-3}(t)+f_{m-2}(t)+f_{m-1}(t)\right) dt. \end{aligned}$$

Therefore using Lemma 3.3, we obtain

$$\begin{aligned} \sum _{i=1}^{m+1}\int _{0}^{T}|q_{i}(\tau )|d\tau \le 2\,\mathrm{erfc}\left( \frac{h}{2\sqrt{\nu T}}\right) +\sum _{i=0}^{m-1}2^{i+1}\mathrm{erfc}\left( \frac{ih}{2\sqrt{\nu T}}\right) \le Q(h,\nu ,T), \end{aligned}$$

where \(Q(h,\nu ,T):=2\,\mathrm{erfc}\left( \frac{h}{2\sqrt{\nu T}}\right) +\sum _{i=0}^{\infty }2^{i+1}\mathrm{erfc}\left( \frac{ih}{2\sqrt{\nu T}}\right) \). So we get the second estimate as

$$\begin{aligned} {\displaystyle \max _{1\le i\le 2m}}\parallel w_{i}^{k}\parallel _{L^{\infty }(0,T)}\le Q^{k}\,\mathrm{erfc}\left( \frac{kh}{2\sqrt{\nu T}}\right) {\displaystyle \max _{1\le i\le 2m}}\parallel w_{i}^{0}\parallel _{L^{\infty }(0,T)}. \end{aligned}$$
(A.4)

The result follows combining the two estimates (A.2) and (A.4).

We compare the two estimates (A.2) and (A.4) in Fig. 16 for \(\nu =1\). The region below the red curve is where the estimate (A.2) is more accurate than (A.4).

Fig. 16
figure 16

Comparison of the two estimates (A.2) and (A.4) for \(\nu =1\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gander, M.J., Kwok, F. & Mandal, B.C. Dirichlet–Neumann waveform relaxation methods for parabolic and hyperbolic problems in multiple subdomains. Bit Numer Math 61, 173–207 (2021). https://doi.org/10.1007/s10543-020-00823-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-020-00823-2

Keywords

Mathematics Subject Classification

Navigation