Skip to main content

Advertisement

Log in

Bioprocess strategies for enhancing the outdoor production of Nannochloropsis gaditana: an evaluation of the effects of pH on culture performance in tubular photobioreactors

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

A priority of the industrial applications of microalgae is the reduction of production costs while maximizing algae biomass productivity. The purpose of this study was to carry out a comprehensive evaluation of the effects of pH control on the production of Nannochloropsis gaditana in tubular photobioreactors under external conditions while considering the environmental, biological, and operational parameters of the process. Experiments were carried out in 3.0 m3 tubular photobioreactors under outdoor conditions. The pH values evaluated were 6.0, 7.0, 8.0, 9.0, and 10.0, which were controlled by injecting pure CO2 on-demand. The results have shown that the ideal pH for microalgal growth was 8.0, with higher values of biomass productivity (Pb) (0.16 g L−1 d−1), and CO2 use efficiency (\(E_{\text{CO}_{2}}\)) (74.6% w w−1); \(R_{\text{CO}_{2}}\)/biomass value obtained at this pH (2.42 \(\text{g}_{\text{CO}_{2}}\) gbiomass−1) was close to the theoretical value, indicating an adequate CO2 supply. At this pH, the system was more stable and required a lower number of CO2 injections than the other treatments. At pH 6.0, there was a decrease in the Pb and \(E_{\text{CO}_{2}}\); cultures at pH 10.0 exhibited a lower Pb and photosynthetic efficiency as well. These results imply that controlling the pH at an optimum value allows higher CO2 conversions in biomass to be achieved and contributes to the reduction in costs of the microalgae production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Acién FG, Grima EM, Reis A et al (2017) Photobioreactors for the production of microalgae. In: Gonzalez-Fernandez C, Muñoz R (eds) Microalgae-based biofuels and bioproducts from feedstock cultivation to end-products. Woodhead Publishing, Cambridge, pp 1–44

    Google Scholar 

  2. Trentin G, Bertucco A, Sforza E (2019) Mixotrophy in Synechocystis sp. for the treatment of wastewater with high nutrient content: effect of CO2 and light. Bioprocess Biosyst Eng 42:1661–1669. https://doi.org/10.1007/s00449-019-02162-1

    Article  CAS  PubMed  Google Scholar 

  3. Ramos-Ibarra JR, Snell-Castro R, Neria-Casillas JA, Choix FJ (2019) Biotechnological potential of Chlorella sp. and Scenedesmus sp. microalgae to endure high CO2 and methane concentrations from biogas. Bioprocess Biosyst Eng 42:1603–1610. https://doi.org/10.1007/s00449-019-02157-y

    Article  CAS  PubMed  Google Scholar 

  4. Rizwan M, Mujtaba G, Memon SA et al (2018) Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sustain Energy Rev 92:394–404. https://doi.org/10.1016/j.rser.2018.04.034

    Article  Google Scholar 

  5. Camacho-Rodríguez J, González-Céspedes AM, Cerón-García MC et al (2014) A quantitative study of eicosapentaenoic acid (EPA) production by Nannochloropsis gaditana for aquaculture as a function of dilution rate, temperature and average irradiance. Appl Microbiol Biotechnol 98:2429–2440. https://doi.org/10.1007/s00253-013-5413-9

    Article  CAS  PubMed  Google Scholar 

  6. Camacho-Rodríguez J, Cerón-García MC, Fernández-Sevilla JM, Molina-Grima E (2015) The influence of culture conditions on biomass and high value product generation by Nannochloropsis gaditana in aquaculture. Algal Res 11:63–73. https://doi.org/10.1016/j.algal.2015.05.017

    Article  Google Scholar 

  7. Chua ET, Schenk PM (2017) A biorefinery for Nannochloropsis: Induction, harvesting, and extraction of EPA-rich oil and high-value protein. Bioresour Technol 244:1416–1424. https://doi.org/10.1016/j.biortech.2017.05.124

    Article  CAS  PubMed  Google Scholar 

  8. Chukhutsina VU, Fristedt R, Morosinotto T, Croce R (2017) Photoprotection strategies of the alga Nannochloropsis gaditana. Biochim Biophys Acta Bioenerg 1858:544–552. https://doi.org/10.1016/j.bbabio.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  9. San Pedro A, González-López CV, Acién FG, Molina-Grima E (2013) Marine microalgae selection and culture conditions optimization for biodiesel production. Bioresour Technol 134:353–361. https://doi.org/10.1016/j.biortech.2013.02.032

    Article  CAS  PubMed  Google Scholar 

  10. González-López CV, Cerón-García MC, Fernández-Sevilla JM et al (2013) Medium recycling for Nannochloropsis gaditana cultures for aquaculture. Bioresour Technol 129:430–438. https://doi.org/10.1016/j.biortech.2012.11.061

    Article  CAS  PubMed  Google Scholar 

  11. San Pedro A, González-López CV, Acién FG, Molina-Grima E (2015) Outdoor pilot production of Nannochloropsis gaditana: Influence of culture parameters and lipid production rates in raceway ponds. Algal Res 18:205–213. https://doi.org/10.1016/j.algal.2015.02.013

    Article  Google Scholar 

  12. San Pedro A, González-López CV, Acién FG, Molina-Grima E (2014) Outdoor pilot-scale production of Nannochloropsis gaditana: influence of culture parameters and lipid production rates in tubular photobioreactors. Bioresour Technol 169:667–676. https://doi.org/10.1016/j.biortech.2014.07.052

    Article  CAS  PubMed  Google Scholar 

  13. Gupta S, Pawar SB, Pandey RA et al (2019) Outdoor microalgae cultivation in airlift photobioreactor at high irradiance and temperature conditions: effect of batch and fed-batch strategies, photoinhibition, and temperature stress. Bioprocess Biosyst Eng 42:331–344. https://doi.org/10.1007/s00449-018-2037-6

    Article  CAS  PubMed  Google Scholar 

  14. Ippoliti D, González A, Martín I et al (2016) Outdoor production of Tisochrysis lutea in pilot-scale tubular photobioreactors. J Appl Phycol 28:3159–3166. https://doi.org/10.1007/s10811-016-0856-x

    Article  CAS  Google Scholar 

  15. Qiu R, Gao S, Lopez PA, Ogden KL (2017) Effects of pH on cell growth, lipid production and CO2 addition of microalgae Chlorella sorokiniana. Algal Res 28:192–199. https://doi.org/10.1016/j.algal.2017.11.004

    Article  Google Scholar 

  16. Khatoon H, Abdu Rahman N, Banerjee S et al (2014) Effects of different salinities and pH on the growth and proximate composition of Nannochloropsis sp. and Tetraselmis sp. isolated from South China Sea cultured under control and natural condition. Int Biodeterior Biodegrad 95:11–18. https://doi.org/10.1016/j.ibiod.2014.06.022

    Article  CAS  Google Scholar 

  17. Zhou W, Wang J, Chen P et al (2017) Bio-mitigation of carbon dioxide using microalgal systems: advances and perspectives. Renew Sustain Energy Rev 76:1163–1175. https://doi.org/10.1016/j.rser.2017.03.065

    Article  CAS  Google Scholar 

  18. Bartley ML, Boeing WJ, Dungan BN et al (2014) pH effects on growth and lipid accumulation of the biofuel microalgae Nannochloropsis salina and invading organisms. J Appl Phycol 26:1431–1437. https://doi.org/10.1007/s10811-013-0177-2

    Article  CAS  Google Scholar 

  19. Wang B, Lan CQ, Horsman M (2012) Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv 30:904–912. https://doi.org/10.1016/j.biotechadv.2012.01.019

    Article  CAS  PubMed  Google Scholar 

  20. Vonshak A (1997) Physiology, cell-biology and biotechnology. In: Vonshak A (ed) Spirulina platensis (Arthrospira). Taylor & Francis, London

    Chapter  Google Scholar 

  21. Rocha JMS, Garcia JEC, Henriques MHF (2003) Growth aspects of the marine microalga Nannochloropsis gaditana. Biomol Eng 20:237–242. https://doi.org/10.1016/S1389-0344(03)00061-3

    Article  CAS  PubMed  Google Scholar 

  22. Grobbelaar JU (2013) Inorganic algal nutrition. In: Richmond A, Hu Q (eds) Handbook of microalgal culture, 2nd edn. Wiley, Oxford, pp 123–133

    Chapter  Google Scholar 

  23. Acién FG, Fernández JM, Magán JJ, Molina E (2012) Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol Adv 30:1344–1353. https://doi.org/10.1016/j.biotechadv.2012.02.005

    Article  PubMed  Google Scholar 

  24. Andrade GA, Pagano DJ, Guzmán JL et al (2016) Distributed sliding mode control of pH in tubular photobioreactors. IEEE Trans Control Syst Technol 24:1160–1173. https://doi.org/10.1109/TCST.2015.2480840

    Article  Google Scholar 

  25. Acién F, Fernández-Sevilla J, Grima E (2016) Supply of CO2 to closed and open photobioreactors. In: Slocombe SP, Benemann JR (eds) Microalgal production for biomass and high-value products. CRC Press, Boca Raton, pp 225–252

    Google Scholar 

  26. Godos I, Mendoza JL, Acién FG et al (2014) Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour Technol 153:307–314. https://doi.org/10.1016/j.biortech.2013.11.087

    Article  CAS  PubMed  Google Scholar 

  27. Camacho-Rodríguez J, Cerón-García MC, González-López CV et al (2013) A low-cost culture medium for the production of Nannochloropsis gaditana biomass optimized for aquaculture. Bioresour Technol 144:57–66. https://doi.org/10.1016/j.biortech.2013.06.083

    Article  CAS  PubMed  Google Scholar 

  28. Moraes L, Rosa GM, España AM et al (2019) Engineering strategies for the enhancement of Nannochloropsis gaditana outdoor production: influence of the CO2 flow rate on the culture performance in tubular photobioreactors. Process Biochem 76:171–177. https://doi.org/10.1016/j.procbio.2018.10.010

    Article  CAS  Google Scholar 

  29. Fernández I, Acién FGF, Berenguel M et al (2014) A lumped parameter chemical-physical model for tubular photobioreactors. Chem Eng Sci 112:116–129. https://doi.org/10.1016/j.ces.2014.03.020

    Article  CAS  Google Scholar 

  30. Fernández I, Acién FG, Fernández JM et al (2012) Dynamic model of microalgal production in tubular photobioreactors. Bioresour Technol 126:172–181. https://doi.org/10.1016/j.biortech.2012.08.087

    Article  CAS  PubMed  Google Scholar 

  31. Andrade GA, Berenguel M, Guzmán JL et al (2016) Optimization of biomass production in outdoor tubular photobioreactors. J Process Control 37:58–69. https://doi.org/10.1016/j.jprocont.2015.10.001

    Article  CAS  Google Scholar 

  32. Molina-Grima E, Acién FG, García-Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247. https://doi.org/10.1016/S0079-6352(99)80118-0

    Article  CAS  Google Scholar 

  33. Arbib Z, Ruiz J, Álvarez-Díaz P et al (2013) Effect of pH control by means of flue gas addition on three different photo-bioreactors treating urban wastewater in long-term operation. Ecol Eng 57:226–235. https://doi.org/10.1016/j.ecoleng.2013.04.040

    Article  Google Scholar 

  34. Figueroa FL, Jiménez C, Lubián LM et al (1997) Effects of high irradiance and temperature on photosynthesis and photoinhibition in Nannochloropsis gaditana Lubián (Eustigmatophyceae). J Plant Physiol 151:6–15. https://doi.org/10.1016/S0176-1617(97)80030-2

    Article  CAS  Google Scholar 

  35. Jiang Y, Zhang W, Wang J et al (2013) Utilization of simulated flue gas for cultivation of Scenedesmus dimorphus. Bioresour Technol 128:359–364. https://doi.org/10.1016/j.biortech.2012.10.119

    Article  CAS  PubMed  Google Scholar 

  36. Santos TD, Mendoza-Martín JL, Acién Fernández FG et al (2016) Optimization of carbon dioxide supply in raceway reactors: influence of carbon dioxide molar fraction and gas flow rate. Bioresour Technol 212:72–81. https://doi.org/10.1016/j.biortech.2016.04.023

    Article  CAS  Google Scholar 

  37. Pawlowski A, Mendoza JL, Guzmán JL et al (2014) Effective utilization of flue gases in raceway reactor with event-based pH control for microalgae culture. Bioresour Technol 170:1–9. https://doi.org/10.1016/j.biortech.2014.07.088

    Article  CAS  PubMed  Google Scholar 

  38. Pawlowski A, Fernández I, Guzmán JL et al (2014) Event-based predictive control of pH in tubular photobioreactors. Comput Chem Eng 65:28–39. https://doi.org/10.1016/j.compchemeng.2014.03.001

    Article  CAS  Google Scholar 

  39. Kosourov S, Seibert M, Ghirardi ML (2003) Effects of extracellular pH on the metabolic pathways in sulfur-deprived H2-producting Chlamydomonas reinhardtii cultures. Plant Cell Physiol 44:146–155

    Article  CAS  Google Scholar 

  40. Sánchez JF, Fernández JM, Acién FG et al (2008) Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43:398–405. https://doi.org/10.1016/j.procbio.2008.01.004

    Article  CAS  Google Scholar 

  41. Kassim MA, Meng TK (2017) Carbon dioxide (CO2) biofixation by microalgae and its potential for biorefinery and biofuel production. Sci Total Environ 584–585:1121–1129. https://doi.org/10.1016/j.scitotenv.2017.01.172

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES (Coordination for the Improvement of Higher Education Personnel) for their support with the Sandwich Doctorate Scholarship Abroad (PDSE) under the process Number: 88881.131625/2016-01, the European Union’s Horizon 2020 Research and Innovation Program under Grant Agreement No. 727874 SABANA. Besides, G.M. Rosa would like to thank the postdoctoral fellowship from CNPq (process number 15297/2018-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. V. Costa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraes, L., Rosa, G.M., Cara, I.M. et al. Bioprocess strategies for enhancing the outdoor production of Nannochloropsis gaditana: an evaluation of the effects of pH on culture performance in tubular photobioreactors. Bioprocess Biosyst Eng 43, 1823–1832 (2020). https://doi.org/10.1007/s00449-020-02373-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02373-x

Keywords

Navigation