Skip to main content
Log in

Fault-tolerant control based on adaptive super-twisting nonsingular integral-type terminal sliding mode for a delta parallel robot

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

External disturbances, internal uncertainties and actuator faults with an unknown range have detrimental effects on controller performance of industrial robots. In this paper, to deal with such challenges, a new fault-tolerant control (FTC) strategy using a combination of nonsingular integral-type terminal sliding mode (NITSM) and adaptive high-order super-twisting (AST) control is proposed for a delta-type parallel robot. To eliminate the chattering of sliding mode controller as a key ingredient of excessive energy consumption and convergence rate reduction, high-order algorithm is applied. Stability analysis of the closed-loop system is performed using Lyapunov theory. Moreover, to achieve optimal performance, controller parameters are obtained using harmony search algorithm (HSA) by minimizing an objective function consisting of integral time absolute error (ITAE) and control signal rate. The proposed controller performance is compared with conventional sliding mode and feedback linearization control methods. The obtained results reveal the superiority of the proposed AST-NITSM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Chen M, Tao G Adaptive fault-tolerant control of uncertain nonlinear large-scale systems with unknown dead zone. IEEE Trans Cybern, to be published

  2. Patton RJ (2015) Fault-tolerant control. In: Encyclopedia of systems and control, Springer, London, pp 422–428

  3. Li B, Du H, Li W (2016) Fault-tolerant control of electric vehicles within-wheel motors using actuator-grouping sliding mode controllers. Mech Syst Sign Process 72–73:462–485

    Google Scholar 

  4. Jang JO (2009) Neuro-fuzzy networks saturation compensation of DC motor systems. Mechatronics 19:529–534

    Google Scholar 

  5. Gao Z, Cecati C, Ding SX (2015) A survey of fault diagnosis and fault-tolerant techniques—part I: fault diagnosis with model-based and signal-based approaches. IEEE Trans Ind Electron 62(6):3757–3767

    Google Scholar 

  6. Jiang J, Yu X (2012) Fault-tolerant control systems: a comparative study between active and passive approaches. Ann Rev Control 36(1):60–72

    Google Scholar 

  7. Allerhand LI, Shaked U (2015) Robust switching-based fault tolerant control. IEEE Trans Autom Control 60(8):2272–2276

    MathSciNet  MATH  Google Scholar 

  8. Benosman M, Lum KY (2010) Passive actuators’ fault-tolerant control for affine nonlinear systems. IEEE Trans Control Syst Technol 18(1):152–163

    Google Scholar 

  9. Wang R, Wang J (2013) Passive actuator fault-tolerant control for a class of overactuated nonlinear systems and applications to electric vehicles. IEEE Trans Veh Technol 62(3):972–985

    Google Scholar 

  10. Zhang R, Qiao J, Li T, Guo L (2014) Robust fault-tolerant control for flexible spacecraft against partial actuator failures. Nonlin. Dyn. 76(3):1753–1760

    MathSciNet  MATH  Google Scholar 

  11. Caccavale F, Marino A, Muscio G, Pie F (2013) Discrete-time framework for fault diagnosis in robotic manipulators. IEEE Trans Control Syst Technol 21(5):858–1873

    Google Scholar 

  12. Shen Q, Jiang B, Cocquempot V (2014) Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults. IEEE Trans Fuzzy Syst 22(2):338–349

    Google Scholar 

  13. Wang R, Wang J (2011) Fault-tolerant control with active fault diagnosis for four-wheel independently driven electric ground vehicles. IEEE Trans Veh Technol 60(9):4276–4287

    Google Scholar 

  14. Ferdowsi H, Jagannathan S (Jun. 2013) A decentralized fault accommodation scheme for nonlinear interconnected systems. In: Proc. IEEE Conf. Prognostics Health Manage. (PHM), Gaithersburg, MD, USA

  15. Paoli A, Sartini M, Lafortune S (2011) Active fault tolerant control of discrete event systems using online diagnostics. Automatica 47(4):639–649

    MathSciNet  MATH  Google Scholar 

  16. Wu HN, Bai MZ (2009) Active fault-tolerant fuzzy control design of nonlinear model tracking with application to chaotic systems. IET Control Theory Appl 3(6):642–653

    MathSciNet  Google Scholar 

  17. Wang Y, Liu L, Wang D, Ju F, Chen B (2019) Time-delay control using a novel nonlinear adaptive law for accurate trajectory tracking of cable-driven robots. IEEE Trans Ind Inf 16(8):5234–5243

    Google Scholar 

  18. Wang Y, Yan Y, Chen J, Ju F, Chen B (2019) A new adaptive time-delay control scheme for cable-driven manipulators. IEEE Trans Industr Inf 15(6):3469–3481

    Google Scholar 

  19. Wang Y, Zhu K, Chen B, Jin M (2019) Model-free continuous nonsingular fast terminal sliding mode control for cable-driven manipulators. ISA Trans 98:483–495

    Google Scholar 

  20. Piltan F, Kim CH, Kim JM (2019) Advanced adaptive fault diagnosis and tolerant control for robot manipulators. Energies 12(7):1281

    Google Scholar 

  21. Van M, Franciosa P, Ceglarek D (2016) Fault diagnosis and fault-tolerant control of uncertain robot manipulators using high-order sliding mode. Math Probl Eng 2016

  22. Li Q, Yuan J, Sun C (2019) Robust fault-tolerant saturated control for spacecraft proximity operations with actuator saturation and faults. Adv Space Res 63(5):1541–1553

    Google Scholar 

  23. Smaeilzadeh SM, Golestani M (2018) Finite-time fault-tolerant adaptive robust control for a class of uncertain non-linear systems with saturation constraints using integral backstepping approach. IET Control Theory Applications 12(15):2109–2117

    MathSciNet  Google Scholar 

  24. Venkataraman S, Gulati S (1991) Terminal sliding modes: a new approach to nonlinear control synthesis. Adv Robot 43:443–448

    Google Scholar 

  25. Bartolini G, Ferrara A, Levant A, Usai E (1999) On second order sliding mode controllers. In: Young K, Özgüner Ü (eds) Variable structure systems, sliding mode and nonlinear control. Lecture Notes in Control and Information Sciences, vol 247. Springer, London, pp 329–350

    MATH  Google Scholar 

  26. Utkin V, Guldner J, Shi J (1999) Sliding mode control in electromechanical systems, abingdon-on-thames. Taylor-Francis, Abingdon

    Google Scholar 

  27. Boiko I, Fridman L (2005) Analysis of chattering in continuous sliding-mode controllers. IEEE Trans Autom Control 50:1442–1446

    MathSciNet  MATH  Google Scholar 

  28. Fridman L (2001) An averaging approach to chattering. IEEE Trans Autom Control 46:1260–1265

    MathSciNet  MATH  Google Scholar 

  29. Liu J, Wang X (2012) Advanced sliding mode control for mechanical systems. Springer, New York

    MATH  Google Scholar 

  30. Fridman L, Levant A (2002) Higher order sliding modes. In: Perruquetti W, Barbot J (eds) Sliding mode control in engineering. Marcel Dekker, New York, pp 53–102

    Google Scholar 

  31. Joe H, Kim M, Yu SC (2014) Second-order sliding-mode controller for autonomous underwater vehicle in the presence of unknown disturbances. Nonlinear Dyn 78(1):183–196

    Google Scholar 

  32. Levant A (1993) Sliding order and sliding accuracy in sliding mode control. Int J Control 58(6):1247–1263

    MathSciNet  MATH  Google Scholar 

  33. Yang J, Su J, Li S, Yu X (2014) High-order mismatched disturbance compensation for motion control systems via a continuous dynamic sliding-mode approach. IEEE Trans Ind Inf 10(1):604–614

    Google Scholar 

  34. Bartolini G, Pisano A, Punta E, Usai E (2003) A survey of applications of second-order sliding mode control to mechanical systems. Int J Control 76(9–10):875–892

    MathSciNet  MATH  Google Scholar 

  35. Shtessel Y, Edwards C, Fridman L, Levant A (2014) Sliding Mode Control and Observation. Springer, New York

    Google Scholar 

  36. Guzmán E, Moreno JA (2015) Super-twisting observer for second-order systems with time-varying coefficient. IET Control Theory Appl 9(4):553–562

    MathSciNet  Google Scholar 

  37. Mu C, Sun C (2015) A new finite time convergence condition for super-twisting observer based on Lyapunov analysis. Asian J. Control 17(3):1050–1060

    MathSciNet  MATH  Google Scholar 

  38. Utkin V (2013) On convergence time and disturbance rejection of super-twisting control. IEEE Trans Autom Control 58(8):2013–2017

    MathSciNet  MATH  Google Scholar 

  39. Zebbara M, Messlema Y, Gouichichea AM, Tadjine M (2019) Super-twisting sliding mode control and robust loop shaping design of RO desalination process powered by PV generator. Desalination 458:122–135

    Google Scholar 

  40. Moreno JA, Osorio M (2008) A Lyapunov approach to second order sliding mode controllers and observer. In: 47th IEEE Conference on Decision and Control, Mexico, Cancun

  41. Zargham F, Mazinan AH (2018) Super-twisting sliding mode control approach with its application to wind turbine systems. Energy Syst. 11(1):1–19

    Google Scholar 

  42. Mazare M, Taghizadeh M, Najafi MR (2016) Kinematic analysis and design of a novel 3-DOF translational parallel robot. Int J Autom Comput 14(4):432–441

    Google Scholar 

  43. Mazare M, Taghizadeh M, Najafi MR (2017) Contouring control of a 3-[P2 (US)] parallel manipulator. Adv Robot 31(9):496–508

    Google Scholar 

  44. Mazare M, Taghizadeh M, Najafi MR (2019) Inverse dynamics of a 3-P [2 (US)] translational parallel robot. Robotica 37(4):708–728

    Google Scholar 

  45. Van M, Kang HJ, Suh YS, Shin KS (2013) A robust fault diagnosis and accommodation scheme for robot manipulators. Int J Control Autom Syst 11(2):377–388

    Google Scholar 

  46. Chalanga A, Kamal S, Fridman LM, Bandyopadhyay B, Moreno JA (2016) Implementation of super-twisting control: super-twisting and higher order sliding-mode observer-based approaches. IEEE Trans Industr Electron 63(6):3677–3685

    Google Scholar 

  47. Moreno JA, Osorio M (2012) Strict lyapunov functions for the super-twisting algorithm. IEEE Trans Autom Control 57(4):1035–1040

    MathSciNet  MATH  Google Scholar 

  48. Wang Y et al (2019) Adaptive super-twisting fractional-order nonsingular terminal sliding mode control of cable-driven manipulators. ISA Trans 86:163–180

    Google Scholar 

  49. Rahmani M, Komijani H, Ghanbari A et al (2018) Optimal novel super-twisting PID sliding mode control of a MEMS gyroscope based on multi-objective bat algorithm. Microsyst Technol 24:2835–2846

    Google Scholar 

  50. Goel A, Swarup A (2017) MIMO uncertain nonlinear system control via adaptive high-order super twisting sliding mode and its application to robotic manipulator. J Control Autom Electr Syst 28:36–49

    Google Scholar 

  51. Mokhtari M, Taghizadeh M, Mazare M (2019) Optimal adaptive high-order super twisting sliding mode control of a lower limb exoskeleton robot. Modares Mech Eng 19(3):777–787

    Google Scholar 

  52. Geem ZW, Kim JH, Loganathan G (2001) A new heuristic optimization algorithm: harmony search. Simulation 76:60–68

    Google Scholar 

  53. Geem Z, Kim JH, Loganathan G (2002) Harmony search optimization: application to pipe network design. Int J Model Simul 22:125–133

    Google Scholar 

  54. Mazare M, Taghizadeh M, Kazemi MG (2018) Optimal hybrid scheme of dynamic neural network and PID controller based on harmony search algorithm to control a PWM-driven pneumatic actuator position. J Vib Control 24(16):3538–3554

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Taghizadeh.

Additional information

Technical Editor: Adriano Almeida Gonçalves Siqueira.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazare, M., Taghizadeh, M. & Ghaf-Ghanbari, P. Fault-tolerant control based on adaptive super-twisting nonsingular integral-type terminal sliding mode for a delta parallel robot. J Braz. Soc. Mech. Sci. Eng. 42, 443 (2020). https://doi.org/10.1007/s40430-020-02510-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02510-3

Keywords

Navigation