Skip to main content
Log in

A Note on Inhomogeneous Coupled Schrödinger Equations

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

It is the purpose of this note to study the inhomogeneous coupled Schrödinger system

$$\begin{aligned} i\dot{u}_j +\Delta u_j\pm |x|^b\left( \displaystyle \sum _{k=1}^{m}a_{jk}|u_k|^p\right) |u_j|^{p-2}u_j=0. \end{aligned}$$

Indeed, in the stationary case, the existence of ground states is proved and a sharp inhomogeneous Gagliardo–Nirenberg-type inequality is established. In the evolving case, the existence of global/non-global focusing solutions is investigated using the potential well method. Finally, the decay of defocusing global solutions is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akahori, T., Ibrahim, S., Kikuchi, H., Nawa, H.: Existence of a ground state and scattering for a nonlinear Schrödinger equation with critical growth. Sel. Math. New Ser. 19, 545–609 (2013)

    MATH  Google Scholar 

  2. Akhmediev, N., Ankiewicz, A.: Partially coherent solitons on a finite background. Phys. Rev. Lett. 82, 2661 (1999)

    ADS  Google Scholar 

  3. Ambrosetti, A., Colorado, E.: Bound and ground states of coupled non-linear Schrödinger equations. C. R. Acad. Sci. Paris Ser. I(342), 453–458 (2006)

    MATH  Google Scholar 

  4. Ambrosetti, A., Colorado, E.: Standing waves of some coupled non-linear Schrödinger equations. J. Lond. Math. Soc. 75, 67–82 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Bartsch, T., Wang, Z.-Q.: Note on ground states of non-linear Schrödinger equations. J. Partial Differ. Equ. 19, 200–207 (2006)

    MATH  Google Scholar 

  6. Bartsch, T., Wang, Z.-Q., Wei, J.C.: Bound states for a coupled Schrödinger system. J. Fixed Point Theory Appl. 2, 353–367 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Cazenave, T. (eds.) : Semilinear Schrödinger equations, CLN. AMS (2003)

  8. Chen, J.: On the inhomogeneous non-linear Schrödinger equation with harmonic potential and unbounded coefficient. Czechoslov. Math. J. 60(3), 715–736 (2010)

    MATH  Google Scholar 

  9. Chen, J.: On a class of non-linear inhomogeneous Schrödinger equations. J. Appl. Math. Soc. 32, 237–253 (2010)

    Google Scholar 

  10. Chen, J., Guo, B.: Sharp global existence and blowing up results for inhomogeneous Schrödinger equations. Discrete Contin. Dyn. Syst. Ser. B 8, 357–367 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Dancer, E.N., Wei, J.: Spike solutions in coupled non-linear Schrödinger equations with attractive interaction. Trans. Am. Math. Soc. 361, 1189–1208 (2009)

    MATH  Google Scholar 

  12. Dancer, E.N., Wei, J., Weth, T.: A priori bounds versus multiple existence of positive solutions for a non-linear Schrödinger system. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 27, 953–969 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  13. De Bouard, A., Fukuizumi, F.: Stability of standing waves for non-linear Schrödinger equations with inhomogeneous non-linearities. Ann. Henri Poincaré 6, 1157–1177 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Dinh, V.D.: Energy scattering for a class of the defocusing inhomogeneous non-linear Schrödinger equation. J. Evol. Equ. 19, 411–434 (2019)

    MathSciNet  MATH  Google Scholar 

  15. Duyckaerts, T., Holmer, J., Roudenko, S.: Scattering for the non-radial 3D cubic nonlinear Schrödingerequation. Math. Res. Lett. 15(5–6), 1233–1250 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Farah, L.G.: Global well-posedness an blow-up on the energy space for the inhomogeneous non-linear Schrödinger equation. Math. Res. Lett. 16(1), 193–208 (2016)

    MATH  Google Scholar 

  17. Fibich, G., Wang, X.P.: Stability of solitary waves for non-linear Schrödinger equations with inhomogeneous non-linearity. Phys. D 175, 96–108 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Fukuizumi, R., Ohta, M.: Instability of standing waves for non-linear Schrödinger equations with inhomogeneous non-linearities. J. Math. Kyoto Univ. 45, 145–852 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Genoud, F.: An inhomogeneous, \(L^2\)-critical, non-linear Schrödinger equation. Z. Anal. Anwend. 31(3), 283–290 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Gill, T.S.: Optical guiding of laser beam in nonuniform plasma. Pramana J. Phys. 55, 845–852 (2000)

    ADS  Google Scholar 

  21. Guzmán, C.M.: On well posedness for the inhomogeneous non-linear Schrödinger equation. Non-linear Anal. 37, 249–286 (2017)

    MATH  Google Scholar 

  22. Hasegawa, A., Tappert, F.: Transmission of stationary non-linear optical pulses in dispersive dielectric fibers II. Normal dispersion. Appl. Phys. Lett. 23, 171–172 (1973)

    ADS  Google Scholar 

  23. Hezzi, H., Marzouk, A., Saanouni, T.: A note on the inhomogeneous Schrödinger equation with mixed power non-linearity. Commun. Math. Anal. 18(2), 34–53 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Holmer, J., Roudenko, S.: A sharp condition for scattering of the radial 3D cubic non-linear Schrödinger equations. Commun. Math. Phys. 282, 435–467 (2008)

    ADS  MATH  Google Scholar 

  25. Ibrahim, S., Masmoudi, N., Nakanishi, K.: Scattering threshold for the focusing nonlinear Klein–Gordon equation. Anal. PDE 4(3), 405–460 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Jeanjean, L., Le Coz, S.: An existence and stability result for standing waves of non-linear Schrödinger equations. Adv. Differ. Equ. 11, 813–840 (2006)

    MATH  Google Scholar 

  27. Kenig, C., Merle, F.: Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case. Invent. Math. 166(3), 645–675 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Liu, C.S., Tripathi, V.K.: Laser guiding in an axially nonuniform plasma channel. Phys. Plasmas 1, 3100–3103 (1994)

    ADS  Google Scholar 

  29. Liu, Y., Wang, X.P.: Instability of standing waves of the Schrödinger equation with inhomogeneous non-linearity. Trans. Am. Math. Soc. 358, 2105–2122 (2006)

    MATH  Google Scholar 

  30. Lin, T.-C., Wei, J.: Ground state of N coupled non-linear Schrödinger equations in \(\mathbb{R}^n\), \(n \le 3\). Commun. Math. Phys. 255, 629–653 (2005)

    ADS  MATH  Google Scholar 

  31. Lions, P.L.: Symétrie et compacité dans les espaces de Sobolev. J. Funct. Anal. 49(3), 315–334 (1982)

    MATH  Google Scholar 

  32. Liu, Z., Wang, Z.-Q.: Multiple bound states of non-linear Schrödinger systems. Commun. Math. Phys. 282, 721–731 (2008)

    ADS  MATH  Google Scholar 

  33. Liu, Z., Wang, Z.-Q.: Ground states and bound states of a non-linear Schrödinger system. Adv. Non-linear Stud. 10, 175–193 (2010)

    MATH  Google Scholar 

  34. Maia, L.A., Montefusco, E., Pellacci, B.: Positive solutions for a weakly coupled non-linear Schrodinger system. J. Differ. Equ. 229, 743–767 (2006)

    ADS  MATH  Google Scholar 

  35. Merle, F.: Nonexistence of minimal blow-up solutions of equations \(i u_t= - \Delta u- K(x)|u|^{\frac{4}{N}}u \; \in \mathbb{R}^N\). Ann. Inst. H. Poincaré Phys. Théor. 64, 33–85 (1996)

    MathSciNet  Google Scholar 

  36. Payne, L.E., Sattinger, D.H.: Saddle points and instability of non-linear hyperbolic equations. Isr. J. Math. 22, 273–303 (1976)

    MATH  Google Scholar 

  37. Saanouni, T.: A note on coupled focusing non-linear Schrödinger equations. Appl. Anal. 95(6), 2063–2080 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Saanouni, T.: Defocusing coupled non-linear Schrödinger equations. J. Abstr. Differ. Equ. Appl. 7(1), 78–96 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Sirakov, B.: Least energy solitary waves for a system of non-linear Schrödinger equations in \(\mathbb{R}^n\). Commun. Math. Phys. 271, 199–221 (2007)

    ADS  MATH  Google Scholar 

  40. Strauss, W.A.: Existence of solitary waves in higher dimension. Commun. Math. Phys. 55, 149–162 (1977)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Weinstein, M.I.: Non-linear Schrödinger equations and sharp interpolation estimates. Commun. Math. Phys. 87, 567–576 (1983)

    ADS  MATH  Google Scholar 

  42. Wei, J.C., Yao, W.: Uniqueness of positive solutions to some coupled non-linear Schrödinger equations. Commun. Pure. Appl. Anal. 11, 1003–1011 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Zakharov, V.E.: Stability of periodic waves of finite amplitude on the surface of a deep fluid. Sov. Phys. J. Appl. Mech. Tech. Phys. 4, 190–194 (1968)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Saanouni.

Additional information

Communicated by Nader Masmoudi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

This section is devoted to prove Lemma 2.17 and Proposition 2.20.

1.1 Compact Sobolev Injection

This subsection contains a proof of Lemma 2.17. Take \((u_n)\) a bounded sequence of \(H_{rd}^1.\) Without loss of generality, one assumes that \((u_n)\) converges weakly to zero in \(H_{rd}^1.\) Our purpose is to prove that \(\Vert u_n\Vert _{L^{2p}(|x|^b\mathrm{d}x)}\rightarrow 0.\) Take \(\epsilon >0\) and write

$$\begin{aligned} \int _{\mathbb {R}^N}|x|^b|u_n|^{2p}\,\mathrm{d}x= \left( \int _{|x|\le \epsilon }+ \int _{\epsilon \le |x|\le \frac{1}{\epsilon }}+\int _{|x|\ge \frac{1}{\epsilon }} \right) |x|^b|u_n|^{2p}\,\mathrm{d}x. \end{aligned}$$

By Strauss inequality and compact Sobolev injections,

$$\begin{aligned} \int _{|x|\le \epsilon }|x|^b|u_n|^{2p}\,\mathrm{d}x\le & {} \int _{|x|\le \epsilon }(|x|^\frac{N-1}{2}|u_n|)^\frac{2b}{N-1}|u_n|^{2(p-\frac{b}{N-1})}\,\mathrm{d}x \\\le & {} C \int _{|x|\le \epsilon }|u_n|^{2(p-\frac{b}{N-1})}\,\mathrm{d}x\longrightarrow 0. \end{aligned}$$

On the other hand, with strauss inequality, via the fact that \(-b+(N-1)(p-1)>0,\) one gets

$$\begin{aligned} \int _{|x|\ge \frac{1}{\epsilon }}|x|^b|u_n|^{2p}\,\mathrm{d}x= & {} \int _{|x|\ge \frac{1}{\epsilon }}\left( |x|^{\frac{N-1}{2}}|u_n|\right) ^{2p-2}|x|^{b- (N-1)(p-1)}|u_n|^2\,\mathrm{d}x\\\le & {} C\Vert u_n\Vert _{H^1}^{2p-2}\int _{|x|\ge \frac{1}{\epsilon }}|x|^{b- (N-1)(p-1)}|u_n|^2\,\mathrm{d}x\\\le & {} C\Vert u_n\Vert _{H^1}^{2p} \left( \frac{1}{\epsilon }\right) ^{b- (N-1)(p-1)}\\\le & {} C\Vert u_n\Vert _{H^1}^{2p}{\epsilon }^{-b+(N-1)(p-1)}. \end{aligned}$$

Now, by the Rellich theorem, it follows that

$$\begin{aligned} \int _{\epsilon \le |x|\le \frac{1}{\epsilon }}|u_n|^{2}\,\mathrm{d}x\rightarrow 0\quad \text{ as }\quad n\rightarrow +\infty . \end{aligned}$$

Using Strauss inequality, one gets that

$$\begin{aligned} \int _{\epsilon \le |x|\le \frac{1}{\epsilon }}|x|^b|u_n|^{2p}\,\mathrm{d}x= & {} \int _{\epsilon \le |x|\le \frac{1}{\epsilon }}\left( |x|^{\frac{N-1}{2}}|u_n|\right) ^{2p-2}|x|^{b- (N-1)(p-1)}|u_n|^2\,\mathrm{d}x\\\le & {} C\Vert u_n\Vert _{H^1}^{2p-2}\int _{\epsilon \le |x|\le \frac{1}{\epsilon }}|x|^{b- (N-1)(p-1)}|u_n|^2\,\mathrm{d}x\\\le & {} C\Vert u_n\Vert _{H^1}^{2p-2} \left( \frac{1}{\epsilon }\right) ^{b- (N-1)(p-1)}\int _{\epsilon \le |x|\le \frac{1}{\epsilon }}|u_n|^2\,\mathrm{d}x\\\le & {} C\Vert u_n\Vert _{H^1}^{2p}{\epsilon }^{-b+(N-1)(p-1)}\int _{\epsilon \le |x|\le \frac{1}{\epsilon }}|u_n|^2\,\mathrm{d}x \rightarrow 0 \quad \text{ as }\quad n\rightarrow +\infty . \end{aligned}$$

Since \(\epsilon \) is arbitrary, one obtains \(\int _{\mathbb {R}^N}|x|^b|u_n|^{2p}\,\mathrm{d}x\rightarrow 0\) as \(n\rightarrow 0.\) The proof is complete.

1.2 Morawetz Estimate

This subsection is devoted to prove Proposition 2.20 about some classical Morawetz estimates satisfied by energy global solutions to the inhomogeneous coupled Schrödinger problem (1.1). Let us give an auxiliary result.

Lemma 10.1

Let \(N\ge 3, b\ge 0\) and \(1+\frac{b}{N-1}<p <p^*\) and \(u\in C(\mathbb {R},\mathcal {H}_{rd})\) be a global solution to (1.1). Take \(a:\mathbb {R}^N\rightarrow \mathbb {R}\) be a convex smooth function and define the real function

$$\begin{aligned} V:=\sum _{j=1}^m\int _{\mathbb {R}^N}a(x)|u_j(.,x)|^2\,\mathrm{d}x. \end{aligned}$$

Then, the following equality holds

$$\begin{aligned} V''= & {} -\int _{\mathbb {R}^N}\Delta ^2a|u|^2\,\mathrm{d}x+4\sum _{j=1}^m\int _{\mathbb {R}^N}\partial _l\partial _ka\mathfrak {R}(\partial _ku_j\partial _l\bar{u}_j)\,\mathrm{d}x\\&-\frac{2b}{p}\sum _{j,k=1}^ma_{jk}\int _{\mathbb {R}^N}\nabla a.x|x|^{b-2}|u_k|^p|u_j|^{p}\,\mathrm{d}x\\&+2\left( 1-\frac{1}{p}\right) \sum _{j,k=1}^ma_{jk}\int _{\mathbb {R}^N}\Delta a |x|^b|u_k|^p|u_j|^p\,\mathrm{d}x. \end{aligned}$$

Remark 10.2

The summation convention when indexes are repeated is used.

Proof

Denote the source term

$$\begin{aligned} \mathcal {N}:=-|x|^b\left( \displaystyle \sum _{k=1}^m a_{jk}|u_k|^p\right) |u_j|^{p-2}u_j. \end{aligned}$$

Multiplying Eq. (1.1) by \(2\bar{u}\) and examining the imaginary parts, one gets

$$\begin{aligned} \partial _t (|u_j|^2) =-2\mathfrak {I}(\bar{u}_j \Delta u_j). \end{aligned}$$

Thus,

$$\begin{aligned} V'= & {} -2\int _{\mathbb {R}^N}a\mathfrak {I}(\bar{u}_j\Delta u_j)\,\mathrm{d}x\\= & {} 2\mathfrak {I}\int _{\mathbb {R}^N}(\partial _ka\partial _ku_j)\bar{u}_j \,\mathrm{d}x. \end{aligned}$$

Compute,

$$\begin{aligned} \partial _t\mathfrak {I}(\partial _k u_j\bar{u}_j)= & {} \mathfrak {I}(\partial _k\dot{u}_j\bar{u}_j)+\mathfrak {I}(\partial _k u_j\bar{\dot{u}_j})\\= & {} \mathfrak {R}(i\dot{u}_j\partial _k\bar{u}_j)-\mathfrak {R}(i\partial _k \dot{u}_j\bar{u}_j)\\= & {} \mathfrak {R}(\partial _k\bar{u}_j(-\Delta u_j-\mathcal {N}))-\mathfrak {R}(\bar{u}_j\partial _k(-\Delta u_j-\mathcal {N}))\\= & {} \mathfrak {R}(\bar{u}_j\partial _k\Delta u_j-\partial _k\bar{u}_j\Delta u_j)+\mathfrak {R}(\bar{u}_j\partial _k\mathcal {N}-\partial _k\bar{u}_j\mathcal {N}). \end{aligned}$$

Recall the identity

$$\begin{aligned} \frac{1}{2}\partial _k\Delta (|u_j|^2)-2\partial _l\mathfrak {R}(\partial _{k}u_j\partial _l\bar{u}_j)=\mathfrak {R}(\bar{u}_j\partial _k\Delta u_j-\partial _k\bar{u}_j\Delta u_j). \end{aligned}$$

Then,

$$\begin{aligned}&\int _{\mathbb {R}^N}\partial _ka\mathfrak {R}(\bar{u}_j\partial _k\Delta u_j-\partial _k\bar{u}_j\Delta u_j)\,\mathrm{d}x\\&\quad =\int _{\mathbb {R}^N}\partial _ka\left( \frac{1}{2}\partial _k\Delta (|u_j|^2)-2\partial _l\mathfrak {R}(\partial _ku_j\partial _l\bar{u}_j)\right) \,\mathrm{d}x\\&\quad =-\frac{1}{2}\int _{\mathbb {R}^N}\Delta ^2a|u_j|^2\,\mathrm{d}x+2\int _{\mathbb {R}^N}\partial _l\partial _ka\mathfrak {R}(\partial _ku_j\partial _l\bar{u}_j)\,\mathrm{d}x. \end{aligned}$$

On the other hand,

$$\begin{aligned} \int _{\mathbb {R}^N}\partial _ka\mathfrak {R}(\bar{u}_j\partial _k\mathcal {N}-\partial _k\bar{u}_j\mathcal {N})\,\mathrm{d}x= & {} \int _{\mathbb {R}^N}\partial _ka\mathfrak {R}(\partial _k[\bar{u}_j\mathcal {N}]-2\partial _k\bar{u}_j\mathcal {N})\,\mathrm{d}x\\= & {} \int _{\mathbb {R}^N}\left( -\Delta a\bar{u}_j\mathcal {N}-2\mathfrak {R}(\partial _ka\partial _k\bar{u}_j\mathcal {N})\right) \,\mathrm{d}x\\= & {} \sum _{k=1}^ma_{jk}\int _{\mathbb {R}^N}\Delta a |x|^b|u_k|^p|u_j|^p\,\mathrm{d}x-2\int _{\mathbb {R}^N}\mathfrak {R}(\partial _ka\partial _k\bar{u}_j\mathcal {N})\,\mathrm{d}x\\= & {} \sum _{k=1}^ma_{jk}\int _{\mathbb {R}^N}\Delta a |x|^b|u_k|^p|u_j|^p\,\mathrm{d}x\\&+\frac{2}{p} \displaystyle \sum _{k=1}^ma_{jk}\int _{\mathbb {R}^N}|x|^b\partial _i a\partial _i(|u_j|^p)|u_k|^p\,\mathrm{d}x. \end{aligned}$$

Moreover, with a symmetry argument

$$\begin{aligned} (A)&:=\sum _{k,j=1}^ma_{jk}\int _{\mathbb {R}^N}|x|^b\partial _i a\partial _i(|u_j|^p)|u_k|^p\,\mathrm{d}x\\&:=\frac{1}{2}\sum _{k,j=1}^ma_{jk}\int _{\mathbb {R}^N}|x|^b\partial _i a\partial _i(|u_j|^p|u_k|^p)\,\mathrm{d}x\\&=-\frac{1}{2}\sum _{k,j=1}^ma_{jk}\int _{\mathbb {R}^N}div(|x|^b\nabla a)|u_k|^p|u_j|^{p}\,\mathrm{d}x\\&=-\frac{1}{2}\sum _{k,j=1}^ma_{jk}\int _{\mathbb {R}^N}\left( \Delta a|x|^b|u_k|^p|u_j|^{p}\,\mathrm{d}x+b\nabla a.x|x|^{b-2}|u_k|^p|u_j|^{p}\right) \,\mathrm{d}x. \end{aligned}$$

Then,

$$\begin{aligned} V''= & {} -\int _{\mathbb {R}^N}\Delta ^2a|u|^2\,\mathrm{d}x+4\sum _{j=1}^m\int _{\mathbb {R}^N}\partial _l\partial _ka\mathfrak {R}(\partial _ku_j\partial _l\bar{u}_j)\,\mathrm{d}x\\&+2\sum _{k,j=1}^ma_{jk}\int _{\mathbb {R}^N}\Delta a |x|^b|u_k|^p|u_j|^p\,\mathrm{d}x+\frac{4}{p} \displaystyle \sum _{j,k=1}^ma_{jk}\int _{\mathbb {R}^N}|x|^b\partial _i a\partial _i(|u_j|^p)|u_k|^p\,\mathrm{d}x\\= & {} -\int _{\mathbb {R}^N}\Delta ^2a|u|^2\,\mathrm{d}x+4\sum _{j=1}^m\int _{\mathbb {R}^N}\partial _l\partial _ka\mathfrak {R}(\partial _ku_j\partial _l\bar{u}_j)\,\mathrm{d}x\\&+2\sum _{j,k=1}^ma_{jk}\int _{\mathbb {R}^N}\Delta a |x|^b|u_k|^p|u_j|^p\,\mathrm{d}x\\&-\frac{2}{p}\sum _{j,k=1}^ma_{jk}\left( \int _{\mathbb {R}^N}\Delta a|x|^b|u_k|^p|u_j|^{p}\,\mathrm{d}x+\int _{\mathbb {R}^N}b\nabla a.x|x|^{b-2}|u_k|^p|u_j|^{p}\,\mathrm{d}x\right) \\= & {} -\int _{\mathbb {R}^N}\Delta ^2a|u|^2\,\mathrm{d}x+4\sum _{j=1}^m\int _{\mathbb {R}^N}\partial _l\partial _ka\mathfrak {R}(\partial _ku_j\partial _l\bar{u}_j)\,\mathrm{d}x\\&-\frac{2b}{p}\sum _{j,k=1}^ma_{jk}\int _{\mathbb {R}^N}\nabla a.x|x|^{b-2}|u_k|^p|u_j|^{p}\,\mathrm{d}x\\&+2\left( 1-\frac{1}{p}\right) \sum _{j,k=1}^ma_{jk}\int _{\mathbb {R}^N}\Delta a |x|^b|u_k|^p|u_j|^p\,\mathrm{d}x. \end{aligned}$$

\(\square \)

Now, one proves the Morawetz estimate.

Proof of Proposition 2.20

Take the choice \(a:=|\cdot |\). Then,

$$\begin{aligned} \nabla a=\frac{.}{|\cdot |},\quad \Delta a=\frac{N-1}{|\cdot |} \end{aligned}$$

and

$$\begin{aligned} -\Delta ^2a=\left\{ \begin{array}{ll} 4\pi (N-1)\delta _0,&{}\quad \text{ if }\quad N=3;\\ \frac{(N-1)(N-3)}{|\cdot |^3},&{}\quad \text{ if }\quad N\ge 4. \end{array} \right. \end{aligned}$$

Moreover, since a is convex, one gets

$$\begin{aligned} \partial _l\partial _ka\mathfrak {R}(\partial _ku_j\partial _l\bar{u}_j)\ge 0. \end{aligned}$$

Applying the previous lemma and using the fact that \(p>1+\frac{b}{N-1}\), it follows that

$$\begin{aligned} V''\ge & {} -\frac{2b}{p}\sum _{j,k=1}^ma_{jk}\int _{\mathbb {R}^N}\nabla a.x|x|^{b-2}|u_k|^p|u_j|^{p}\,\mathrm{d}x\\&+2\left( 1-\frac{1}{p}\right) \sum _{j,k=1}^ma_{jk}\int _{\mathbb {R}^N}\Delta a |x|^b|u_k|^p|u_j|^p\,\mathrm{d}x\\\ge & {} -\frac{2b}{p}\sum _{j,k=1}^ma_{jk}\int _{\mathbb {R}^N}|x|^{b-1}|u_k|^p|u_j|^{p}\,\mathrm{d}x+2(N-1)\left( 1-\frac{1}{p}\right) \\&\times \sum _{j,k=1}^ma_{jk}\int _{\mathbb {R}^N} |x|^{b-1}|u_k|^p|u_j|^p\,\mathrm{d}x\\\ge & {} \left( -\frac{2b}{p}+2(N-1)\left( 1-\frac{1}{p}\right) \right) \sum _{j,k=1}^ma_{jk}\int _{\mathbb {R}^N} |x|^{b-1}|u_k|^p|u_j|^p\,\mathrm{d}x\\ > rsim & {} \sum _{j,k=1}^ma_{jk}\int _{\mathbb {R}^N} |x|^{b-1}|u_k|^p|u_j|^p\,\mathrm{d}x. \end{aligned}$$

Integrating in time and using the defocusing sign, one gets

$$\begin{aligned} \sqrt{E(0)M(0)} > rsim & {} \Vert u\Vert _{L^\infty (\mathbb {R},L^2)}\Vert \nabla u(t)\Vert _{L^\infty (I,L^2)}\\ > rsim & {} \Vert V'\Vert _{L^\infty (\mathbb {R})}\\ > rsim & {} \sum _{j,k=1}^ma_{jk}\int _\mathbb {R}\int _{\mathbb {R}^N} |x|^{b-1}|u_k|^p|u_j|^p\,\mathrm{d}t\,\mathrm{d}x. \end{aligned}$$

This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanmi, R., Hezzi, H. & Saanouni, T. A Note on Inhomogeneous Coupled Schrödinger Equations. Ann. Henri Poincaré 21, 2775–2814 (2020). https://doi.org/10.1007/s00023-020-00942-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-00942-0

Mathematics Subject Classification

Navigation