Skip to main content

Advertisement

Log in

Specific occupational profiles as proxies of cognitive reserve induce neuroprotection in dementia with Lewy bodies

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Cognitive reserve (CR) delays cognitive decline due to neurodegeneration. Heterogeneous evidence suggests that education may act as CR in Dementia with Lewy Bodies (DLB). No data, however, are currently available on the role of occupation as proxy of CR in this neuropathology. Thirty-three patients with probable DLB were retrospectively included. We performed regression analyses models (TFCE p < 0.05) and seed-based interregional correlation analyses (p = 0.001, FWE-corrected at cluster-level) with brain metabolism. We aimed at exploring the relationship between brain metabolic connectivity, as assessed by FDG-PET, in the relevant resting-state networks and CR proxies (education, 6-levels occupation, and the specific O*Net occupational profiles). Education modulates executive (ECN), attentive (ATTN) and posterior default mode (PDMN) networks in the highly educated DLB subjects, as shown by an increased metabolic connectivity, acting as a compensatory mechanism. High scores of the 6-levels occupation scale were associated with a decreased connectivity in the anterior default mode (ADMN) and high visual network (HVN), suggesting brain reserve mechanisms. As for the specific O*Net occupational profiles, these modulated ADMN, PDMN, ATTN, ECN, HVN and primary visual network (PVN) connectivity according to different neuroprotection mechanisms, namely neural reserve and compensation against neurodegeneration. This study highlights the relevance of life-long occupational activities at individual level in the neural expression of compensatory and neuroprotective mechanisms in DLB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data used in preparation of this study are available from the corresponding author upon reasonable request.

Abbreviations

CR:

cognitive reserve

JSC:

Jaccard similarity coefficient

PVN:

primary visual network

HVN:

high visual network

ECN:

frontal executive control networks

ATTN:

attentional network

ADMN:

anterior default mode network

PDMN:

posterior default mode network

References

  • Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502–509 https://doi.org/10.1016/j.tics.2013.08.012.

    Article  Google Scholar 

  • Borroni, B., Premi, E., Agosti, C., Alberici, A., Garibotto, V., Bellelli, G., Paghera, B., Lucchini, S., Giubbini, R., Perani, D., & Padovani, A. (2009). Revisiting brain reserve hypothesis in frontotemporal dementia: Evidence from a brain perfusion study. Dementia and Geriatric Cognitive Disorders, 28(2), 130–135 https://doi.org/10.1159/000235575.

    Article  Google Scholar 

  • Burton, E. J., Karas, G., Paling, S. M., Barber, R., Williams, E. D., Ballard, C. G., et al. (2002). Patterns of cerebral atrophy in dementia with Lewy bodies using voxel-based morphometry. Neuroimage, 17(2), 618–630.

    Article  Google Scholar 

  • Caminiti, S., Tettamanti, M., Sala, A., Presotto, L., Iannaccone, S., Cappa, S. F., et al. (2017). Metabolic connectomics targeting brain pathology in dementia with Lewy bodies. Journal of Cerebral Blood Flow and Metabolism, 37(4), 1311–1325 https://doi.org/10.1177/0271678X16654497.

    Article  Google Scholar 

  • Caminiti, S., Sala, A., Iaccarino, L., Beretta, L., Pilotto, A., Gianolli, L., et al. (2019). Brain glucose metabolism in Lewy body dementia: Implications for diagnostic criteria. Alzheimer’s Research & Therapy, 11(1), 20.

    Article  Google Scholar 

  • Dodich, A., Carli, G., Cerami, C., Iannaccone, S., Magnani, G., & Perani, D. (2018). Social and cognitive control skills in long-life occupation activities modulate the brain reserve in the behavioural variant of frontotemporal dementia. Cortex, 99,. https://doi.org/10.1016/j.cortex.2017.12.006,311-318

  • Duncan, J., & Owen, A. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends in Neurosciences, 36(3), 486–488 https://doi.org/10.1007/s11631-017-0212-0.

    Google Scholar 

  • Fan, J., McCandliss, B. D., Fossella, J., Flombaum, J. I., & Posner, M. I. (2005). The activation of attentional networks. NeuroImage, 26(2), 471–479 https://doi.org/10.1016/j.neuroimage.2005.02.004.

    Article  Google Scholar 

  • Franciotti, R., Falasca, N. W., Bonanni, L., Anzellotti, F., Maruotti, V., Comani, S., Thomas, A., Tartaro, A., Taylor, J. P., & Onofrj, M. (2013). Default network is not hypoactive in dementia with fluctuating cognition: An Alzheimer disease/dementia with Lewy bodies comparison. Neurobiology of Aging, 34(4), 1148–1158.

    Article  Google Scholar 

  • Fratiglioni, L., & Wang, H. X. (2007). Brain reserve hypothesis in dementia. Journal of Alzheimer’s Disease, 12(1), 11–22 https://doi.org/10.3233/JAD-2007-12103.

    Article  Google Scholar 

  • Gardini, S., Venneri, A., Sambataro, F., Cuetos, F., Fasano, F., Marchi, M., Crisi, G., & Caffarra, P. (2015). Increased functional connectivity in the default mode network in mild cognitive impairment: A maladaptive compensatory mechanism associated with poor semantic memory performance. Journal of Alzheimer’s Disease, 45(2), 457–470 https://doi.org/10.3233/JAD-142547.

    Article  Google Scholar 

  • Garibotto, V., Borroni, B., Kalbe, E., Herholz, K., Salmon, E., Holtoff, V., Sorbi, S., Cappa, S. F., Padovani, A., Fazio, F., & Perani, D. (2008). Education and occupation as proxies for reserve in aMCI converters and AD: FDG-PET evidence. Neurology, 71(17), 1342–1349 https://doi.org/10.1212/01.wnl.0000327670.62378.c0.

    Article  Google Scholar 

  • Gogolla, N. (2017). The insular cortex. Current Biology, 27(12), R580–R586 https://doi.org/10.1016/j.cub.2017.05.010.

    Article  Google Scholar 

  • Iturria-Medina, Y., & Evans, A. C. (2015). On the central role of brain connectivity in neurodegenerative disease progression. Frontiers in Aging Neuroscience, 7, 90.

    Article  Google Scholar 

  • Lamotte, G., Morello, R., Lebasnier, A., Agostini, D., Bouvard, G., De La Sayette, V., & Defer, G. L. (2016). Influence of education on cognitive performance and dopamine transporter binding in dementia with Lewy bodies. Clinical Neurology and Neurosurgery, 146, 138–143.

    Article  Google Scholar 

  • Lee, D. S., Kang, H., Kim, H., Park, H., Oh, J. S., Lee, J. S., & Lee, M. C. (2008). Metabolic connectivity by interregional correlation analysis using statistical parametric mapping (SPM) and FDG brain PET; methodological development and patterns of metabolic connectivity in adults. European Journal of Nuclear Medicine and Molecular Imaging, 35(9), 1681–1691 https://doi.org/10.1007/s00259-008-0808-z.

    Article  Google Scholar 

  • Malpetti, M., Ballarini, T., Presotto, L., Garibotto, V., Tettamanti, M., & Perani, D. (2017). Gender differences in healthy aging and Alzheimer’s dementia: A 18 F-FDG-PET study of brain and cognitive reserve. Human Brain Mapping, 38(8), 4212–4227 https://doi.org/10.1002/hbm.2365.

  • McKeith, I. G., Boeve, B. F., DIckson, D. W., Halliday, G., Taylor, J. P., Weintraub, D., et al. (2017). Diagnosis and management of dementia with Lewy bodies. Neurology, 89, 88–100. https://doi.org/10.1212/WNL.0000000000004058.

  • Mori, E., Shimomura, T., Fujimori, M., Hirono, N., Imamura, T., Hashimoto, M., Tanimukai, S., Kazui, H., & Hanihara, T. (2000). Visuoperceptual impairment in dementia with Lewy bodies. Archives of Neurology, 57(4), 489–493 https://doi.org/10.1001/archneur.57.4.489.

    Article  Google Scholar 

  • Mosimann, U. P., Mather, G., Wesnes, K. A., O’Brien, J. T., Burn, D. J., & McKeith, I. G. (2004). Visual perception in Parkinson disease dementia and dementia with Lewy bodies. Neurology, 63(11), 2091–2096 https://doi.org/10.1212/01.WNL.0000145764.70698.4E.

    Article  Google Scholar 

  • O*Net resource center. (1998).

  • Palop, J. J., Chin, J., & Mucke, L. (2006). A network dysfunction perspective on neurodegenerative diseases. Nature, 443(7113), 768–773.

    Article  Google Scholar 

  • Perani, D., & Abutalebi, J. (2015). Bilingualism , dementia , cognitive and neural reserve. Current Opinion in Neurology, 28(6), 618–625 https://doi.org/10.1097/WCO.0000000000000267.

    Article  Google Scholar 

  • Perani, D., Farsad, M., Ballarini, T., Lubian, F., Malpetti, M., & Fracchetti, A. (2017). The impact of bilingualism on brain reserve and metabolic connectivity in Alzheimer ’ s dementia. Proceedings of the National Academy of Sciences, 114(7), 1690–1695. https://doi.org/10.1073/pnas.1610909114

  • Perani, D., Schillaci, O., Padovani, A., Nobili, F.M, Iaccarino, L., Pasquale della Rosa, A., ... & Caltagirone, C. (2014). A survey of FDG-and amyloid-PET imaging in dementia and GRADE analysis. BioMed Research International, 2014.

  • Peraza, L. R., Kaiser, M., Firbank, M., Graziadio, S., Bonanni, L., Onofrj, M., Colloby, S. J., Blamire, A., O'Brien, J., & Taylor, J.-P. (2014). fMRI resting state networks and their association with cognitive fluctuations in dementia with Lewy bodies. NeuroImage: Clinical, 4, 558–565.

    Article  Google Scholar 

  • Perneczky, R., Diehl-Schmid, J., Pohl, C., Drzezga, A., & Kurz, A. (2007a). Non-fluent progressive aphasia: Cerebral metabolic patterns and brain reserve. Brain Research, 1133(1), 178–185 https://doi.org/10.1016/j.brainres.2006.11.054.

    Article  Google Scholar 

  • Perneczky, R., Häussermann, P., Diehl-Schmid, J., Boecker, H., Förstl, H., Drzezga, A., & Kurz, A. (2007b). Metabolic correlates of brain reserve in dementia with Lewy bodies: An FDG PET study. Dementia and Geriatric Cognitive Disorders, 23(6), 416–422.

    Article  Google Scholar 

  • Perneczky, R., Häussermann, P., Drzezga, A., Boecker, H., Granert, O., Feurer, R., Förstl, H., & Kurz, A. (2009). Fluoro-deoxy-glucose positron emission tomography correlates of impaired activities of daily living in dementia with Lewy bodies: Implications for cognitive reserve. The American Journal of Geriatric Psychiatry, 17(3), 188–195.

    Article  Google Scholar 

  • Pievani, M., Filippini, N., van den Heuvel, M. P., Cappa, S. F., & Frisoni, G. B. (2014). Brain connectivity in neurodegenerative diseases-from phenotype to proteinopathy. Nature Reviews. Neurology, 10(11), 620–633 https://doi.org/10.1038/nrneurol.2014.178.

    Article  Google Scholar 

  • Pizzi, S. D., Franciotti, R., Bubbico, G., Thomas, A., Onofrj, M., & Bonanni, L. (2016). Atrophy of hippocampal subfields and adjacent extrahippocampal structures in dementia with Lewy bodies and Alzheimer’s disease. Neurobiology of Aging, 40, 103–109.

    Article  Google Scholar 

  • Pizzi, S. D., Franciotti, R., Tartaro, A., Caulo, M., Thomas, A., Onofrj, M., & Bonanni, L. (2014a). Structural alteration of the dorsal visual network in DLB patients with visual hallucinations: A cortical thickness MRI study. PLoS One, 9(1).

  • Pizzi, S. D., Maruotti, V., Taylor, J. P., Franciotti, R., Caulo, M., Tartaro, A., & Bonanni, L. (2014b). Relevance of subcortical visual pathways disruption to visual symptoms in dementia with Lewy bodies. Cortex, 59, 12–21. https://doi.org/10.1016/j.cortex.2014.07.003

  • Riggs, N. R., Jahromi, L. B., Razza, R. P., Dillworth-Bart, J. E., & Mueller, U. (2006). Executive function and the promotion of social-emotional competence. Journal of Applied Developmental Psychology, 27(4), 300–309 https://doi.org/10.1016/j.appdev.2006.04.002.

    Article  Google Scholar 

  • Rodgers, K. M., Benison, A. M., Klein, A., & Barth, D. S. (2008). Auditory, somatosensory, and multisensory insular cortex in the rat. Cerebral Cortex, 18(12), 2941–2951 https://doi.org/10.1093/cercor/bhn054.

    Article  Google Scholar 

  • Sala, A., & Perani, D. (2019). Brain molecular connectivity in neurodegenerative diseases: Recent advances and new perspectives using positron emission tomography. Frontiers in Neuroscience, 13, 617.

    Article  Google Scholar 

  • Sala, A., Caminiti, S. P., Iaccarino, L., Beretta, L., Iannaccone, S., Magnani, G., … Perani, D. (2019). Vulnerability of multiple large-scale brain networks in dementia with Lewy bodies. Human Brain Mapping, (April), hbm.24719. https://doi.org/10.1002/hbm.24719.

  • Sanchez-Castaneda, C., Rene, R., Ramirez-Ruiz, B., Campdelacreu, J., Gascon, J., Falcon, C., Calopa, M., Jauma, S., Juncadella, M., & Junque, C. (2010). Frontal and associative visual areas related to visual hallucinations in dementia with Lewy bodies and Parkinson’s disease with dementia. Movement Disorders, 25(5), 615–622.

    Article  Google Scholar 

  • Seeley, W., Menon, V., Schatzberg, A., Keller, J., Glover, G., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neurosciences, 27(9), 2349–2356 https://doi.org/10.1523/JNEUROSCI.5587-06.2007.Dissociable.

    Google Scholar 

  • Sestieri, C., Corbetta, M., Romani, G. L., & Shulman, G. L. (2011). Episodic memory retrieval, parietal cortex, and the default mode network: Functional and topographic analyses. Journal of Neuroscience, 31(12), 4407–4420 https://doi.org/10.1523/jneurosci.3335-10.2011.

    Article  Google Scholar 

  • Shine, J. M., O’Callaghan, C., Halliday, G. M., & Lewis, S. J. G. (2014). Tricks of the mind: Visual hallucinations as disorders of attention. Progress in Neurobiology, 116, 58–65.

    Article  Google Scholar 

  • Spisák, T., Spisák, Z., Zunhammer, M., Bingel, U., Smith, S., Nichols, T., & Kincses, T. (2019). Probabilistic TFCE: A generalized combination of cluster size and voxel intensity to increase statistical power. NeuroImage, 185, 12–26.

    Article  Google Scholar 

  • Spreng, R. N., Rosen, H. J., Strother, S., Chow, T. W., Diehl-Schmid, J., Freedman, M., Graff-Radford, N. R., Hodges, J. R., Lipton, A. M., Mendez, M. F., Morelli, S. A., Black, S. E., Miller, B. L., & Levine, B. (2010). Occupation attributes relate to location of atrophy in frontotemporal lobar degeneration. Neuropsychologia, 48(12), 3634–3641 https://doi.org/10.1016/j.neuropsychologia.2010.08.020.

    Article  Google Scholar 

  • Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society : JINS, 8(3), 448–460 https://doi.org/10.1017/S1355617702813248.

    Article  Google Scholar 

  • Vemuri, P., Lesnick, T. G., Przybelski, S. A., Knopman, D. S., Roberts, R. O., Lowe, V. J., Kantarci, K., Senjem, M. L., Gunter, J. L., Boeve, B. F., Petersen, R. C., & Jack, C. R. (2012). Effect of lifestyle activities on alzheimer disease biomarkers and cognition. Annals of Neurology, 72(5), 730–738 https://doi.org/10.1002/ana.23665.

    Article  Google Scholar 

Download references

Funding sources

This work was supported by CARIPLO Project “Evaluation of autonomic, genetic, imaging and biochemical markers for Parkinson-related dementia: longitudinal assessment of a PD cohort” 2016–2020 (grant agreement no. 2014–0832)” (D.P.) and by the Italian Ministry of Health (Ricerca Finalizzata Progetto Reti Nazionale AD NET-2011-02346784), the IVASCOMAR project “Identificazione, validazione e sviluppo commerciale di nuovi biomarcatori diagnostici prognostici per malattie complesse” (grant agreement no. CTN01_00177_165430).

Author information

Authors and Affiliations

Authors

Contributions

Giulia Carli: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Visualization, Writing - original draft, Writing - review & editing. Cecilia Boccalini: Data curation, Formal analysis, Writing - review & editing. Giovanna Vanoli: Resources, Investigation. Massimo Filippi: Resources, Investigation. Sandro Iannaccone: Resources, Investigation. Giuseppe Magnani: Resources, Investigation. Daniela Perani: Conceptualization, Funding acquisition, Investigation, Resources, Project administration, Supervision, Writing – review & editing.

Corresponding author

Correspondence to Daniela Perani.

Ethics declarations

The experimental procedure was approved by the local Ethical Committee. The protocol conformed to the ethical standards of the Declaration of Helsinki for protection of human subjects. Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors have no conflict of interest to declare.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carli, G., Boccalini, C., Vanoli, G. et al. Specific occupational profiles as proxies of cognitive reserve induce neuroprotection in dementia with Lewy bodies. Brain Imaging and Behavior 15, 1427–1437 (2021). https://doi.org/10.1007/s11682-020-00342-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-020-00342-2

Keywords

Navigation