Skip to main content

Advertisement

Log in

Flood and Edge Effects on Leaf Breakdown in Wetlands of the Cerrado Savanna to Amazonia Ecotone

  • General Wetland Science
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

We studied the rates of leaf decomposition and loss of leaf constituents (lignin and cellulose) of a native plant species using the litterbag experiment during different seasonal periods (flood and drought) in periodically flooded ecosystems, locally known as “Ipucas”. The effects of flood, edge and fungal colonization on leaf degradation were evaluated. The results show that leaf decomposition is very slow, and influenced by seasonality, flooding and leaf chemical quality. Low moisture and leaf structural components contribute to the slow rate of decomposition. In addition, the fungal biomass was sensitive to the edge effect, with higher values in the center, probably due to the edge losing moisture earlier than the center after the end of rainy season. In addition, the positive correlation of fungal biomass with flooding demonstrates the importance of seasonality in these temporally flooded ecosystems, indicating that global changes in rainfall patterns may disrupt carbon cycling and probably nutrient cycling in periodically flooded environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abril G, Martinez JM, Artigas LF, Moreira-Turcq P, Benedetti MF, Vidal L, Meziane T, Kim JH, Bernardes MC, Savoye N, Deborde J, Souza EL, Albéric P, Landim de Souza MF, Roland F (2014) Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505:395–398. https://doi.org/10.1038/nature12797

  • Agoston-Szabó E, Dinka M (2008) Decomposition of Typha angustifolia and Phragmites australis in the littoral zone of a shallow lake. Biologia 63:1104–1110. https://doi.org/10.2478/s11756-008-0154-4

  • Arroita M, Aristi I, Flores L, Larranaga A, Diez J, Mora J, Romani AM, Elosegi A (2012) The use of wooden sticks to assess stream ecosystem functioning: comparison with leaf breakdown rates. Science of the Total Environment 440:115–122

  • Baker TP, Jordan GJ, Baker SC (2016) Microclimatic edge effects in a recently harvested forest: do remnant forest patches create the same impact as large forest areas? Forest Ecology Management 365:128–136. https://doi.org/10.1016/j.foreco.2016.01.022

  • Barbosa MVM, Fernandes TA, Siqueira GB, Siqueira FLT, Morais PB (2019) Spatial variability of the physicochemical properties of soils from seasonally flooded forest fragments on a tropical plain. Applied Environmental Soil Science 2019:ID1814937. https://doi.org/10.1155/2019/1814937, 1, 8

  • Bärlocher F (2005) Freshwater fungal communities. In: The Fungal Community. Its Organization and Role in the Ecosystem (ed) J Dighton, JF white and P Oudemans. CRC Press, Boca Raton, pp 39–59

  • Battle JM, Golladay SW (2001) Hydroperiod influence on breakdown of leaf litter in cypress-gum wetlands. The American Midland Naturalist 146:128–145

  • Bieras AC, Sajo MG (2009) Leaf structure of the cerrado (Brazilian savanna) woody plants. Trees 23:451–471. https://doi.org/10.1007/s00468-008-0295-7

  • Blanco E, Alfaro J (2014) Chemical modification of Calophyllum brasiliense Cambess. And Enterolobium cyclocarpum (Jacq.) Griseb. Wood. Colombia Forestal 17(1):125–132

  • Brito ER, Martins SV, Oliveira-Filho AT, Silva E, Silva AF (2008) Estrutura fitossociológica de um fragmento natural de Floresta inundável em área de campo Sujo, Lagoa da Confusão, Tocantins. Acta Amazonica 38(3):379–386

  • Britson A, Wardrop D, Drohan P (2016) Plant community composition as a driver of decomposition dynamics in riparian wetlands. Wetlands Ecology and Management 24:335–346. https://doi.org/10.1007/s11273-015-9459-6

  • Cadisch G, Giller KE (1997) Driven by nature: plant litter quality and decomposition. CAB International, Wallingford, Oxon, UK, 409 p

  • Carli E, Ribeiro ES, Batista BMF, Pasa MC, Sousa RATM (2012) Aspectos químicos, botânicos e etnobotânicos da espécie Calophyllum brasiliensis Cambess. Biodiversidade 11(1):43–56

  • Castanho CT, Oliveira AA (2008) Relative effect of litter quality, forest type and their interaction on leaf decomposition in south-east Brazilian forests. Journal of Tropical Ecology 24:149–156. https://doi.org/10.1017/S0266467407004749

  • Chauvet E, Suberkropp K (1998) Temperature and sporulation of aquatic hyphomycetes. Applied Environmental Microbiology 64:1522–1525

  • Coûteaux MM, Bottner P, Berg B (1995) Litter decomposition, climate and litter quality. Trends in Ecology and Evolution 10:63–66. https://doi.org/10.1016/S0169-5347(00)88978-8

  • Crawley MJ (2007) The R book. John Wiley & Sons, Chichester, U.K.

  • Cunha C, Junk WJ (2001) Distribution of Woody Plant communities along the flood gradient in the Pantanal of Poconé, Mato Grosso, Brazil. International Journal of Ecological Environment Science 27:63–70

  • Cunha-Neto FV, Leles PSS, Pereira MG, Bellumath VGH, Alonso JM (2013) Acúmulo e decomposição da serapilheira em quatro formações florestais. Ciência Florestal 23(3):379–387

  • Cusack DF, Chou WW, Yang WH, Harmon ME, Silver WL, The LIDET Team (2009) Controls on long-term root and leaf litter decomposition in neotropical forests. Global Change Biology 15:1339–1355

  • Downing JA (2009) Global limnology: up-scaling aquatic services and processes to planet earth. Verhandlungen des Internationalen Verein Limnologie 30:1149–1166. https://doi.org/10.1080/03680770.2009.11923903

  • Encalada AC, Calles J, Ferreira V, Canhoto CM, Graça MAS (2010) Riparian land use and the relationship between the benthos and litter decomposition in tropical montane streams. Freshwater Biology 55:1719–1733 http://doi.org/11245/1.328783

  • Fernandes MM, Pereira MG, Magalhães LMS, Cruz AR, Giácomo RG (2006) Aporte e decomposição de serapilheira em áreas de Floresta secundária, plantio de sabiá (Mimosa caesalpiniaefolia Benth.) e andiroba (Carapa guianensis Aubl.) na Flona Mário Xavier, RJ. Ciência Florestal 16(2):163–175

  • Ferreira V, Encalada AC, Graça MAS (2012) Effects of litter diversity on decomposition and biological colonization of submerged litter in temperate and tropical streams. Freshwater Science 31:945–962

  • Flores BM, Holmgren M, Xu C, van Nes EH, Jakovac CC, Mesquita RCG, Scheffer M (2017) Floodplains as an Achilles’ heel of Amazonian forest resilience. Proceedings of the National Academy of Sciences of the United States of America 114:4442–4446. https://doi.org/10.1073/pnas.1617988114

  • Gavazov KS (2010) Dynamics of alpine plant litter decomposition in a changing climate. Plant and Soil 337:19–32. https://doi.org/10.1007/s11104-010-0477-0

  • Gehlhausen SM, Schwartz MW, Augspurger CK (2000) Vegetation and microclimatic edge effects in two mixed-mesophytic forest fragments. Plant Ecology 147:21–35. https://doi.org/10.1023/A:1009846507652

  • Gessner MO (2005) Ergosterol as a measure of fungal biomass. In: Bärlocher F, Gessner MO (eds) Graça MAS. Methods to Study Litter Decomposition, Springer Netherlands, pp 189–195

  • Gessner MO, Chauvet E (2002) A case for using litter breakdown to assess functional stream integrity. Ecological Applications 12:498–510

  • Gessner MO, Chauvet E, Dobson MA (1999) Perspective on leaf litter breakdown in streams. Oikos 85:377–384 https://www.jstor.org/stable/3546505

  • Gimenes KZ, Cunha-Santino MB, Bianchini-Junior I (2010) Decomposição de matéria orgânica alóctone e autóctone em ecossistemas aquáticos. Oecologia Australis 14:1036–1073

  • Gingerich RT, Panaccione DG, Anderson JT (2015) The role of fungi and invertebrates in litter decomposition in mitigated and reference wetlands. Limnologica 54:23–32. https://doi.org/10.1016/j.limno.2015.07.004

  • Gomes PP, Medeiros AO, Gonçalves-Júnior JF (2016) The replacement of native plants by exotic species may affect thecolonization and reproduction of aquatic hyphomycetes. Limnologica 59:124–130. https://doi.org/10.1016/j.limno.2016.05.005

  • Gonçalves JFJ, Martins RT, Ottoni BMP, Couceiro SRM (2014) Uma visão sobre a decomposição foliar em sistemas aquáticos brasileiros. In: Insetos aquáticos na Amazônia Brasileira: biologia, ecologia e taxonomia (Eds N Hamada, JL Nessimian, RB Querino), p:89-116. Editora Inpa, Manaus-AM

  • Graça MAS, Ferreira V, Canhoto C, Encalada AC, Guerrero-Bolaño F, Wantzen KM, Boyero L (2015) A conceptual model of litter breakdown in low order streams. Internatinal Review Hydrobiology 100:1–12

  • Haidar RF, Dias RR, Pinto JRR (2013) Projeto de Desenvolvimento regional Sustentável: mapeamento das regiões fitoecológicas e inventário Florestal do estado do Tocantins. Regiões Fitoecológicas da Faixa Norte. Seplan/DZE, Palmas

  • Hastwell GT, Morris EC (2013) Structural features of fragmented woodland communities affect leaf litter decomposition rates. Basic and Applied Ecology 14:298–308. https://doi.org/10.1016/j.baae.2013.03.002

  • Hefting MM, Clement JC, Bienkowski P, Dowrick D, Guenat C, Butturini A, Topa S, Pinay G, Verhoeven JTA (2005) The role of vegetation and litter in the nitrogen dynamics of riparian buffer zones in Europe. Ecological Engineering 24:465–482. https://doi.org/10.1016/j.ecoleng.2005.01.003

  • Hieber M, Gessner MO (2002) Contribution of stream detritivores, fungi and bacteria to leaf breakdown based on biomass estimates. Ecology 83:1026–1038. https://doi.org/10.1890/0012-9658(2002)083[1026:COSDFA]2.0.CO;2

  • INMET - Instituto Nacional de Meteorologia. Estações automáticas (2017) Estação meteorológica de observação de superfície automática. Available via: http://www.inmet.gov.br/portal/index.php?r=estacoes/estacoesAutomaticas> Accessed 25 Aug 2017

  • Ipsilantis I, Sylvia DM (2007) Abundance of fungi and bacteria in a nutrient-impacted Florida wetland. Applied Soil Ecology 35(2):272–280. https://doi.org/10.1016/j.apsoil.2006.09.002

  • Hobbie SH, Reich PB, Oleksyn J, Ogdahl M, Zytkowiak R, Hale C, Karolewski P (2006) Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87(9):2288–2297. https://doi.org/10.1890/0012-9658(2006)87[2288:TSEODA]2.0.CO;2

  • Irion G, Nunes GM, Cunha CN, Arruda EC, Tambelini MS, Dias EP, Morais JO, Junk WJ (2016) Araguaia River floodplain: size, age, and mineral composition of a large tropical savanna wetland. Wetlands 36:945–956. https://doi.org/10.1007/s13157-016-0807-y

  • Keddy PA (2010) Wetland ecology: principles and conservation. 2° ed. Cambridge University press, Cambridge

  • Krishna MP, Mohan M (2017) Litter decomposition in forest ecosystems: a review. Energy, Ecology and Environment 2(4):236–249. https://doi.org/10.1007/s40974-017-0064-9

  • Knacker T, Forster B, Rombke J, Frampton GK (2003) Assessing the effects of plant protection products on organic matter breakdown in arable fields-litter decomposition test systems. Soil Biology and Biochemistry 35:1269–1287 https://doi.org/10.1016/S0038-0717(03)00219-0

  • Kuehn KA, Lemke MJ, Suberkropp K, Wetzel RG (2000) Microbial biomass and production associated with decaying leaf litter of the emergent macrophyte Juncus effusus. Limnology and Oceanography 45:862–870

  • Landsberg JJ, Gower ST (1997) Applications of physiological ecology to forest management. Academic Press, San Diego

  • Langhans SD, Tockner K (2006) The role of timing, duration, and frequency of inundation in controlling leaf litter decomposition in a river-floodplain ecosystem (Tagliamento, northeastern Italy). Oecologia 147:501–509. https://doi.org/10.1007/s00442-005-0282-2

  • Lecerf A, Chauvet E (2008) Intraspecific variability in leaf traits strongly affects alder leaf decomposition in a stream. Basic and Applied Ecology 9:598–605. https://doi.org/10.1016/j.baae.2007.11.003

  • Makkonen M, Berg MP, Handa IT, Hättenschwiler S, van Ruijven J, van Bodegom PM, Aerts R (2012) Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecology Letters 15:1033–1041. https://doi.org/10.1111/j.1461-0248.2012.01826.x

  • Maltby E (2009) Functional assessment of wetlands: towards evaluation of ecosystem services. Woodhead Publishing Limited, Cambridge, UK

  • Maracahipes L, Marimon BS, Lenza E, Marimon-Junior BH, Oliveira EA, Mews HA, Gomes L, Feldpausch TR (2014) Post-fire dynamics of woody vegetation in seasonally flooded forests (impucas) in the Cerrado-Amazonian Forest transition zone. Flora 209:260–270. https://doi.org/10.1016/j.flora.2014.02.008

  • Martins ICM, Soares VP, Silva E, Brites RS (2002) Diagnóstico ambiental no contexto da paisagem de fragmentos florestais naturais "Ipucas" no município de Lagoa da Confusão, Tocantins. Revista Árvore 3:299–309

  • Mas-Martí E, Muñoz I, Oliva F, Canhoto C (2015) Effects of increased water temperature on leaf litter quality and detritivore performance: a whole-reach manipulative experiment. Freshwater Biology 60:184–197

  • Middleton BA (2002) Flood pulsing in wetlands: restoring the natural hydrological balance. John Wiley and Sons, New York

  • Moreno ML, Bernaschini ML, Pérez-Harguindeguy N, Valladares GR (2014) Area and edge effects on leaf-litter decomposition in a fragmented subtropical dry forest. Acta Oecologica 60:26–29. https://doi.org/10.1016/j.actao.2014.07.002

  • Moreno ML, Rossetti MR, Pérez-Harguindeguy N, Valladares GR (2017) Edge and herbivory effects on leaf litter decomposability in a subtropical dry forest. Ecological Research 32:341–346. https://doi.org/10.1007/s11284-017-1441-8

  • Moretti MS, Gonçalves-Junior JF, Ligeiro R, Callisto M (2007) Invertebrates colonization on native trees leaves in a neotropical stream (Brazil). International Review Hydrobiology 92:199–210. https://doi.org/10.1002/iroh.200510957

  • Neckles HA, Neill C (1994) Hydrologic control of litter decomposition in seasonally flooded prairie marshes. Hydrobiologia 286:155–165. https://doi.org/10.1007/BF00006247

  • Poi de Neiff A, Neiff JJ, Casco SL (2006) Leaf litter decomposition in three wetland types of the Paraná river floodplain. Wetlands 26:558–566. https://doi.org/10.1672/0277-5212(2006)26[558:LLDITW]2.0.CO;2

  • Newell SY, Arsuffi TL, Fallon RD (1988) Fundamental procedures for determining ergosterol content of decaying plant material by liquid chromatography. Applied Environmental Microbiology 54:1876–1879

  • Oliveira B, Marimon-Junior BH, Mews HA, Valadão MBX, Marimon BS (2017) Unraveling the ecosystem functions in the Amazonia–Cerrado transition: evidence of hyperdynamic nutrient cycling. Plant Ecology 218:225–239. https://doi.org/10.1007/s11258-016-0681-y

  • Paula RR, Pereira MG, Menezes LFT (2009) Aporte de nutrientes e decomposição da serapilheira em três fragmentos florestais periodicamente inundados na Ilha da Marambaia, RJ. Ciência Florestal 19:139–148

  • Peña-Peña K, Irmler U (2016) Moisture seasonality, soil fauna, litter quality and land use as drivers of decomposition in Cerrado soils in SE-Mato Grosso, Brazil. Applied Soil Ecology 107:124–133. https://doi.org/10.1016/j.apsoil.2016.05.007

  • Pinto-Junior OB, Vourlitis GL, Carneiro SEM, Dias MF, Hentz C, Nogueira JS (2018) Interactions between vegetation, hydrology, and litter inputs on decomposition and soil CO2 efflux of tropical forests in the Brazilian Pantanal. Forests 9:281–297. https://doi.org/10.3390/f9050281

  • R Development Core Team (2019) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org

  • Remy E, Wuyts K, van Nevel L, Smedt P, Boeckx P, Verheyen K (2017) Driving factors behind litter decomposition and nutrient release at temperate forest edges. Ecosystems 21:755–771. https://doi.org/10.1007/s10021-017-0182-4

  • Remy E, Wuyts K, Verheyen K, Gundersen P, Boeckx P (2018) Altered microbial communities and nitrogen availability in temperate forest edges. Soil Biology and Biochemistry 116:179–188. https://doi.org/10.1016/j.soilbio.2017.10.016

  • Ribeiro J, Colli GR, Batista R, Soares A (2017) Landscape and local correlates with with anuran taxonomic, functional and phylogenetic diversity in rice crops. Landscape Ecology 32:1599–1612. https://doi.org/10.1007/s10980-017-0525-8

  • Riutta T, Slade EM, Bebber DP, Taylor ME, Malhi Y, Riordan P, Macdonald DW, Morecroft MD (2012) Experimental evidence for the interacting effects of forest edge, moisture and soil macrofauna on leaf litter decomposition. Soil Biology and Biochemistry 49:124–131. https://doi.org/10.1016/j.soilbio.2012.02.028

  • Romero-Torres M, Varela-Ramírez A (2011) Efecto de borde sobre el proceso de descomposición de hojarasca en bosque nublado. Acta Biológica Colombiana 16:155–173

  • Rubinstein A, Vasconcelos HL (2005) Leaf-litter decomposition in Amazonian forest fragments. Journal of Tropical Ecology 21:699–702. https://doi.org/10.1017/S0266467405002762

  • Rueda-Delgado G, Wantzen KM, Tolosa MB (2006) Leaf-litter decomposition in an Amazonian floodplain stream: effects of seasonal hydrological changes. Journal of North American Benthological Society 25:233–249. https://doi.org/10.1899/0887-3593(2006)25[233:LDIAAF]2.0.CO;2

  • Sales MA, Gonçalves-Junior JF, Dahora JS, Medeiros AO (2015) Influence of leaf quality in microbial decomposition in a headwater stream in the Brazilian Cerrado: a 1-year study. Microbial Ecology 69:84–94. https://doi.org/10.1007/s00248-014-0467-5

  • Schwarz W (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Applied Microbiology and Biotechnology 56:634–649. https://doi.org/10.1007/s002530100710

  • Silva VE, Silva AC, Pereira RC, Camargo PB, Silva BPC, Barral UM, Mendonça-Filho CV (2013) Lignocellulosic and isotopic composition of vegetation and soil organic matter of a tropical peat: floristic composition, biomass and carbon stock. Revista Brasileira de Ciência do Solo 37:121–133. https://doi.org/10.1590/S0100-06832013000100013

  • Silva HJ, Barbosa MVM, Morais PB (2015) Estudos sazonais de aspectos limnólogicos de um fragmento Florestal inundado na Planície do Araguaia, Tocantins, Brasil. Journal Bioenergy and Food Science 2:239–248. https://doi.org/10.18067/jbfs.v2i4.76

  • Ström L, Jansson R, Nilsson C, Johansson ME, Xiong SJ (2011) Hydrologic effects on riparian vegetation in a boreal river: an experiment testing climate change predictions. Global Change Biology 17:254–267. https://doi.org/10.1111/j.1365-2486.2010.02230.x

  • Sun Z, Mou X, Shuang-Liu J (2012) Effects of flooding regimes on the decomposition and nutrient dynamics of Calamagrotis angustifolia litter in the Sanjiang plain of China. Environmental Earth Science 66:2235–2246. https://doi.org/10.1007/s12665-011-1444-7

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Blackwell Scientific Publications, Oxford

  • Talbot JM, Treseder KK (2012) Interactions among lignin, cellulose, and nitrogen drive litter chemistry-decay relationships. Ecology 93:345–354 https://www.jstor.org/stable/23143915

  • Tauk SM (1990) Biodegradação de resíduos orgânicos no solo. Revista Brasileira de Geociencias 20:299–301

  • Tiegs SD, Langhans SD, Tockner K, Gessner MO (2007) Cotton strips as a leaf surrogate to measure decomposition in river floodplain habitats. Journal North American Benthological Society 26:70–77. https://doi.org/10.1899/0887-3593(2007)26[70:CSAALS]2.0.CO;2

  • Van Soest PJ (1967) Development of a comprehensive system of feed analysis and its application to forages. Journal of Animal Science 26:119–128

  • Valadão MBX, Carneiro KMS, Inkotte J, Ribeiro FP, Miguel EP, Gatto A (2019) Litterfall, litter layer and leaf decomposition in Eucalyptus stands on Cerrado soils. Scientia Forestalis 47(122):256–264. https://doi.org/10.18671/scifor.v47n122.08

  • Wardle DA (1997) The influence of island area on ecosystem properties. Science 277:1296–1299. https://doi.org/10.1126/science.277.5330.1296

  • Welsch M, Yavitt JB (2003) Early stages of decay of Lythrum salicaria L. and Typha latifolia L. in a standing-dead position. Aquatic Botany 75(1):45–57. https://doi.org/10.1016/S0304-3770(02)00164-X

  • Whittaker RH, Likens GE (1975) The biosphere and man. In: Primary Productivity of the Biosphere (Eds H Lieth, RH Whittaker), p: 305–328. Springer

  • Wu F, Peng C, Zhu J, Zhang J, Tan B, Yang W (2014) Impact of freezing and thawing dynamics on foliar litter carbon release in alpine/subalpine forests along an altitudinal gradient in the eastern Tibetan plateau. Biogeosciences 11:6471–6481. https://doi.org/10.5194/bg-11-6471-2014

  • Xiong S, Nilsson C (1999) The effects of plant litter on vegetation: a meta-analysis. Journal of Ecology 87:984–994. https://doi.org/10.1046/j.1365-2745.1999.00414.x

  • Yue K, Peng C, Yang W, Peng Y, Zhang C, Huang C, Wu F (2016a) Degradation of lignin and cellulose during foliar litter decomposition in an alpine forest river. Ecosphere 7:1–11. https://doi.org/10.1002/ecs2.1523

  • Yue K, Wu F, Yang W, Zhang C, Peng Y, Tan B, Xu Z, Huang C (2016b) Cellulose dynamics during foliar litter decomposition in an Alpine Forest meta-ecosystem. Forests 7:176–188. https://doi.org/10.3390/f7080176

  • Zheng J, Xu Z, Wang T, Dong H, Chen C, Han S (2014) Non-additive effects of mixing different sources of dissolved organic matter on its biodegradation. Soil Biology and Biochemistry 78:160–169. https://doi.org/10.1016/j.soilbio.2014.07.023

  • Zhou GY, Guan LL, Wei XH, Tang XL, Liu SG, Liu JX, Zhang DQ, Yan JH (2008) Factors influencing leaf litter decomposition: an intersite decomposition experiment across China. Plant and Soil 311:61–72. https://doi.org/10.1007/s11104-008-9658-5

Download references

Acknowledgements

MVMB appreciates the financial support received through a scholarship funded by the Coordination of Improvement of Higher Education Personnel – CAPES, and to the Laboratory of Environmental Microbiology and Biotechnology of the Federal University of Tocantins, for providing the necessary conditions for conducting the research. RSR thanks the Communitarian University of Chapecó Region and National Council for Scientific and Technological Development – CNPq (Process: 421288/2017-5 and 405290/2018-7) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Vinicius Moreira Barbosa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure SM

1. Values of remaining mass (A) and fungal biomass (by ergosterol; C), between local (A and C) and among inundation season (B and D) in wet zones. Boxes represent the quartiles, the bold line represents the median, gray cross represents the mean, the vertical dashed line represents the upper and lower limits and circles the outliers. (JPG 35 kb)

Figure SM

2. Values of remaining mass (A) and fungal biomass (by ergosterol; B), among interaction of local and among inundation season in wet zones. Boxes represent the quartiles, the bold line represents the median, gray cross represents the mean, the vertical dashed line represents the upper and lower limits and circles the outliers. (JPG 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, M.V.M., Fernandes, T.A., Medeiros, A.O. et al. Flood and Edge Effects on Leaf Breakdown in Wetlands of the Cerrado Savanna to Amazonia Ecotone. Wetlands 40, 2297–2308 (2020). https://doi.org/10.1007/s13157-020-01331-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13157-020-01331-3

Keywords

Navigation