Skip to main content
Log in

Finite Horizon Optimal Nonlinear Spacecraft Attitude Control

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

This research is devoted to present spacecraft attitude control via a finite-horizon nonlinear optimal control technique. The spacecraft kinematics are represented using the modified Rodrigues parameters, which possess singularities for eigenaxis rotations greater than 180 degree. The proposed technique is based on State Dependent Riccati Equation (SDRE). In this technique, the differential Riccati equation is converted to a linear Lyapunov differential equation. This technique can be applied for finite-horizon nonlinear regulation and tracking problems. The proposed technique is effective for a wide range of operating points. Simulation results are given to illustrate the effectiveness of the finite horizon technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. MATLAB and SIMULINK are registered trademarks of The Mathworks, Inc., Natick, MA, USA.

References

  1. Sharma, R., Tewari, A.: Optimal nonlinear tracking of spacecraft attitude maneuvers. IEEE Trans Control Syst Technol 12(5), 677–682 (2004)

    Article  Google Scholar 

  2. Cho, S., Cheng, Y.-M., Cochran, J.: Large angle maneuver of asymmetric spacecraft using solutions to the impulsive reorientation problem (aas 97–658). Adv. Astronaut. Sci. 97, 899–914 (1998)

    Google Scholar 

  3. Lin, Y., Kraige, L.: Enhanced techniques for solving the two-point boundary-value problem associated with the optimal attitude control of spacecraft. J. Astronaut. Sci. 37, 1–15 (1989)

    Google Scholar 

  4. Vadali, S., Junkins, J.: Optimal open-loop and stable feedback control of rigid spacecraft attitude maneuvers. J. Astronaut. Sci.(ISSN 0021-9142) 32, 105–122 (1984)

    Google Scholar 

  5. Banerjee, A.K.: Optimal feedback gains for three-dimensional large angle slewing of spacecraft. J. Guid. Control Dynam. 14(6), 1313–1315 (1991)

    Article  Google Scholar 

  6. Çimen, T.: State-dependent Riccati equation (SDRE) control: a survey. Proceedings of the 17th World Congress of the International Federation of Automatic Control (IFAC), Seoul, Korea, pp. 6–11 (2008)

  7. Niu, B., Li, L.: Adaptive backstepping-based neural tracking control for mimo nonlinear switched systems subject to input delays. IEEE Transactions on Neural Networks and Learning Systems (2017)

  8. Li, H., Shi, P., Yao, D., Wu, L.: Observer-based adaptive sliding mode control for nonlinear Markovian jump systems. Automatica 64, 133–142 (2016)

    Article  MathSciNet  Google Scholar 

  9. Su, X., Shi, P., Wu, L., Song, Y.-D.: Fault detection filtering for nonlinear switched stochastic systems. IEEE Trans. Autom. Control 61(5), 1310–1315 (2016)

    Article  MathSciNet  Google Scholar 

  10. Niu, B., Zhao, J.: Barrier Lyapunov functions for the output tracking control of constrained nonlinear switched systems. Systems & Control Letters 62(10), 963–971 (2013)

    Article  MathSciNet  Google Scholar 

  11. Cloutier, J.: State-dependent Riccati equation techniques: an overview. Proc. American Control Conference 2, 932–936 (1997)

    Google Scholar 

  12. Çimen, T.: Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis. AIAA Journal of Guidance Control, and Dynamics 35(4), 1025–1047 (2012)

    Article  Google Scholar 

  13. Khamis, A., Naidu, D.: Finite-horizon optimal nonlinear regulation and tracking using differential state dependent Riccati equation. Int. J. Control., pp. 1–18 (2014)

  14. Nguyen, T., Gajic, Z.: Solving the matrix differential Riccati equation: a Lyapunov equation approach. IEEE Trans. Automatic Control 55(1), 191–194 (2010)

    Article  MathSciNet  Google Scholar 

  15. Nazarzadeh, J., Razzaghi, M., Nikravesh, K.: Solution of the matrix Riccati equation for the linear quadratic control problems. Math. Comput. Model. 27(7), 51–55 (1998)

    Article  MathSciNet  Google Scholar 

  16. Aganovic, Z., Gajic, Z.: Successive approximation procedure for steady-state optimal control of bilinear systems. J. Optim. Theory Appl. 84(2), 273–291 (1995)

    Article  MathSciNet  Google Scholar 

  17. Heydari, A., Balakrishnan, S.: Approximate closed-form solutions to finite-horizon optimal control of nonlinear systems. In: American Control Conference (ACC), 2012, pp 2657–2662. IEEE (2012)

  18. Vandenberghe, L., Balakrishnan, V., Wallin, R., Hansson, A., Roh, T.: Positive Polynomials in Control. In: Henrion, D., Garulli, A. (eds.) ch. Interior-point methods for semidefinite programming problems derived from the KYP lemma, vol. 312, pp 195–238. Springer, Berlin (2005)

  19. Khamis, A., Naidu, D., Kamel, A.: Nonlinear finite-horizon regulation and tracking for systems with incomplete state information using differential state dependent Riccati equation. International Journal of Aerospace Engineering, vol. 2014 (2014)

  20. Merttopçuoğlu, A., Kahvecioğlu, A., et al.: Sdre control of the control actuation system of a guided missile. IFAC Proceedings Volumes 40(7), 774–779 (2007)

    Article  Google Scholar 

  21. Mracek, C.P., Cloutier, J.R.: Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method. Int. J. Robust Nonlinear Control 8(4-5), 401–433 (1998)

    Article  MathSciNet  Google Scholar 

  22. Prach, A., Tekinalp, O.: Development of a state dependent Ricatti equation based tracking flight controller for an unmanned aircraft. In: Proc. AIAA Guidance, Navigation, and Control Conference, Boston, MA, pp 51–67 (2013)

  23. Tewari, A.: Optimal nonlinear spacecraft attitude control through Hamilton-Jacobi formulation. J. Astronaut. Sci. 50(1), 99–112 (2002)

    MathSciNet  Google Scholar 

  24. Heydari, A., Balakrishnan, S.: Closed-form solution to finite-horizon suboptimal control of nonlinear systems. Int. J. Robust Nonlinear Control 25(15), 2687–2704 (2015)

    Article  MathSciNet  Google Scholar 

  25. Khamis, A., Kamel, A., Naidu, D.: Nonlinear optimal tracking for missile gimbaled seeker using finite-horizon state dependent Riccati equation. In: 2014 IEEE 4th Annual International Conference on Cyber Technology in Automation, Control, and Intelligent Systems (CYBER), pp 88–93 (2014)

  26. Gajic, Z., Qureshi, M.: The Lyapunov Matrix Equation in System Stability and Control. Dover Publications, New York (2008)

    MATH  Google Scholar 

  27. Barraud, A.: A new numerical solution of xdot=a1*x+x*a2+d, x(0)=c. IEEE Trans. Autom. Control 22(6), 976–977 (1977)

    Article  MathSciNet  Google Scholar 

  28. Abdel-Rahman, E., Nayfeh, A.H.: Two-dimensional control for ship-mounted cranes: a feasibility study. Modal Analysis 9(12), 1327–1342 (2003)

    MATH  Google Scholar 

  29. Sun, N., Fang, Y., Chen, H., Fu, Y., Lu, B.: Nonlinear stabilizing control for ship-mounted cranes with ship roll and heave movements: design, analysis, and experiments. IEEE Transactions on Systems, Man, and Cybernetics: Systems (2017)

  30. Khamis, A., Naidu, D., Zydek, D.: Nonlinear optimal control with incomplete state information using state dependent Riccati equation (SDRE). In: Progress in Systems Engineering, pp 27–33 (2015)

  31. Khamis, A.: Advanced tracking strategies for linear and nonlinear control systems: Theory and applications. Ph.D. dissertation, Idaho State University, Pocatello, Idaho, USA (2014)

  32. Tsiotras, P.: Stabilization and optimality results for the attitude control problem. J. Guid. Control Dynam. 19(4), 772–779 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Khamis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamis, A., Zydek, D. Finite Horizon Optimal Nonlinear Spacecraft Attitude Control. J Astronaut Sci 67, 1002–1020 (2020). https://doi.org/10.1007/s40295-019-00189-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-019-00189-w

Keywords

Navigation