Skip to main content
Log in

Short-term cold storage of encapsulated somatic embryos and retrieval of plantlets in grey orchid (Vanda tessellata (Roxb.) Hook. ex G.Don)

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Vanda tessellata (Roxb.) Hook. ex G.Don (grey orchid) is a horticultural and medicinally potent, and conservation prioritized orchid species. The present study investigates asymbiotic seed germination, callus induction, somatic embryogenesis, encapsulation of somatic embryos (SEs), and retrieval of plantlets of V. tessellata from the artificial seeds after short-term cold storage at − 4 °C for 12 months. Seeds cultured on full strength Murashige and Skoog’s (MS) medium containing 2.0 mg L−1 6-benzylaminopurine (BAP) had the highest frequency of asymbiotic seed germination (94%) as compared with half- and one-fourth strength MS media supplemented with various concentrations and combinations of 6-furfurylaminopurine (kinetin) and BAP. The protocorm like bodies (PLBs) gained dedifferentiation and proliferated into embryogenic calli on MS medium containing 2.0 mg L−1 BAP and 0.5 mg L−1 indole-3 acetic acid (IAA). Somatic embryos (SEs) were differentiated from the callus when cultured on MS medium in combination with 1.0 mg L−1 BAP and 0.5 mg L−1 IAA. The morpho-anatomical elucidations authenticated somatic embryogenesis and various developmental stages of SEs from embryogenic calli. Short-term cold storage of SEs was carried out by encapsulating with 2% sodium alginate and 100 mM calcium chloride and stored under dark at − 4 °C for 12 months to conserve this valuable germplasm. The stored artificial seeds were germinated (91%) on MS medium incorporated with additives and 0.5 mg L−1 each of BAP, kinetin, and IAA. Complete retrieval of plantlets was achieved in 8 week with formation of shoots (4.2 cm average length) and roots (2.5 cm). The well developed plantlets were acclimatized in the greenhouse with 90% survival rate.

Key message

Vanda tessellata (grey orchid) is a horticultural and medicinally potent, and conservation prioritized orchid species. A reproducible protocol has been successfully established for asymbiotic seed germination, callus induction, somatic embryogenesis, encapsulation of somatic embryos, and retrieval of plantlets of V. tessellata from the artificial seeds after short-term cold storage at − 4 °C for 12 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed I, Kumar L, Kumar V (2002) Efficacy of OST-6, a polyherbal formulation in the management of osteoporosis in postmenopausal women. Orthop Today 4:241–244

    Google Scholar 

  • Anuradha V, Rao MVB, Aswar AS (2008) Oxo-tessallatin, a novel phenanthrapyran isolated from Vanda tessellata. Orient J Chem 24:1119–1122

    CAS  Google Scholar 

  • Anuradha V, Rao NSP (1998) Tessallatin a phenanthropyran from Vanda tessellata. Phytochem 48:183–184

    CAS  Google Scholar 

  • Anwar M, Kumar NS, Mahendran B (2013) Hepatoprotective activity of pet-ether extract of Vanda tessellata Roxb. Int Ayur Med J 1:1–4

    Google Scholar 

  • Arditti J (1992) Fundamentals of orchid biology. Wiley, New York

    Google Scholar 

  • Balilashaki K, Vahedi M, Karimi R (2015) In vitro direct regeneration from node and leaf explants of Phalaenopsis cv. ‘Surabaya’. Plant Tiss Cult Biotechnol 25:193–205

    Google Scholar 

  • Baral SM, Kurmi PP (2006) A compendium of medicinal plants in Nepal, Ms. Rachana Sharma, Kathamndu, p 98

  • Baskaran P, Kumari A, van Staden J (2015) Embryogenesis and synthetic seed production in Mondia whitei. Plant Cell Tiss Org Cult 121:205–214

    CAS  Google Scholar 

  • Bembemcha P, Kishor R, Bai NV (2016) In vitro immature embryo germination and propagation of Vanda stangeana Rchb. F., an orchid endemic to India. Hortic Environ Biotechnol 57:615–624

    Google Scholar 

  • Bhattacharjee B, Islam SMS (2014) Effects of plant growth regulators on multiple shoot induction in Vanda tessellata (Roxb.) Hook. Ex G.Don. An endangered medicinal orchid. Int J Sci Nature 5:707–712

    Google Scholar 

  • Bhattacharjee B, Islam SMS (2017) Mass propagation of PLBs derived from leaf and shoots of Vanda tessellata (Roxb.) hook. Ex G. Don an endangered medicinal orchid in Bangladesh. Bangladesh J Bot 46(2):775–782

    Google Scholar 

  • Bhattacharyya P, Kumar V, Van Staden J (2018) In vitro encapsulation based short term storage and assessment of genetic homogeneity in regenerated Ansellia africana (Leopard orchid) using gene targeted molecular markers. Plant Cell Tiss Organ Cult 133:299–310. https://doi.org/10.1007/s11240-018-1382-0

    Article  CAS  Google Scholar 

  • Biotech Consortium India Limited (2005) Potential of tissue cultured plant in domestic market. Summary report on Market Report on Tissue Cultured Plants for Department of Biotechnology and Small Farmers’ Agri-Business Consortium

  • Budisantoso I, Amalia N, Kamsinah K (2017) In vitro callus induction from leaf explants of Vanda sp. stimulated by 2,4-D. Biosaintifika 9:492–497

    Google Scholar 

  • Chawla AS, Sharma AK, Handa SS, Dhar KL (1992) Chemical studies and anti-inflammatory activity of Vanda roxburghii roots. Indian J Pharm Sci 54:159–161

    CAS  Google Scholar 

  • Chen Y, Goodale UM, Fan X-L, Gao J-Y (2015) Asymbiotic seed germination and in vitro seedling development of Paphiopedilum spicerianum: An orchid with an extremely small population in China. Global Ecol Conserv 3:367–378

    Google Scholar 

  • Chowdhury MA, Rahman MM, Chowdhury MRH, Uddin MJ, Sayeed MA, Hossain MA (2014) Antinociceptive and cytotoxic activities of an epiphytic medicinal orchid: Vanda tessellata Roxb. BMC Complem Altern Med 14:464. https://doi.org/10.1186/1472-6882-14-464

    Article  Google Scholar 

  • Chugh S, Guha S, Rao U (2009) Micropropagation of orchids: a review on the potential of different explants. Sci Hortic 122:507–520

    CAS  Google Scholar 

  • da Silva JAT (2012) Production of synseed for hybrid Cymbidium using protocorm-like bodies. J Fruit Ornam Plant Res 20(2):135–146

    Google Scholar 

  • da Silva JAT, Hossain MM, Sharma M, Dobranszki J, Cardoso JC, Songjun Z (2017) Acclimatization of in vitro-derived Dendrobium. Horticult Plant J3:110–124

    Google Scholar 

  • Diengdoh R, Kumaria S, Tandon P, Das MC (2017) Asymbiotic germination and seed storage of Paphiopedilum insigne, an endangered lady's slipper orchid. S Afr J Bot 112:215–224

    Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42

    Google Scholar 

  • Fennell CW, Van Staden J (2004) Biotechnology of Southern African bulbs. S Afr J Bot 70:37–46

    Google Scholar 

  • Feraru E, Friml J (2008) PIN polar targeting. Plant Physiol 147(4):1553–1559. https://doi.org/10.1104/pp.108.121756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaintait S, Kundu S, Ali NC, Sahu NC (2015) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37:98. https://doi.org/10.1007/s11738-015-1847-2

    Article  CAS  Google Scholar 

  • Gantait S, Kundu S (2017) Artificial seeds technology for storage and exchange of plant genetic resources. In: Malik CP (ed) Advanced technologies for crop improvement and agricultural productivity. Agrobios (International), Jodhpur, pp 135–159

    Google Scholar 

  • George EF, Hall MA, De Klerk GJ (2008) The components of plant tissue culture media I: macro-and micro-nutrients. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture. The Netherlands Springer, Dordrecht, pp 65–113

    Google Scholar 

  • Germana MA, Micheli M, Chiancone B, Macaluso L, Standardi A (2011) Organogenesis and encapsulation of in vitro-derived propagules of Carrizo citrange [Citrus sinensis (L.) Osb. 9 Poncirus trifoliata (L.) Raf]. Plant Cell Tissue Organ Cult 106:299–307. https://doi.org/10.1007/s11240-011-9921-y

    Article  Google Scholar 

  • Ghani A (2003) Medicinal plants of Bangladesh with chemical constituents and uses, 2nd edn. Asiatic Society of Bangladesh, Dhaka, p 424

    Google Scholar 

  • Gholami AA, Kaviani B (2018a) Somatic embryogenesis, encapsulation, cold storage and growth of hybrid Citrus [C. paradisi Macf. (‘Duncan’) x C. reticulata Blanco. (‘Dancy’)] shoot tip explants. Indian J Biotechnol 17:134–144

    CAS  Google Scholar 

  • Gholami AA, Kaviani B (2018b) Somatic embryogenesis, encapsulation, cold storage, and growth of hybrid Citrus [C. paradisi Macf. (‘Duncan’) × C. reticulata Blanco. (‘Dancy’)] shoot tip segments. Indian J Biotechnol 17:134–144

    CAS  Google Scholar 

  • Gladfelter HJ, Johnston J, Wilde HD, Merkle SA (2020) Somatic embryogenesis and cryopreservation of Stewartia species. Plant Cell Tiss Organ Cult. https://doi.org/10.1007/s11240-020-01834-1

    Article  Google Scholar 

  • Gupta C, Katewa SS (2014) In vitro evaluation of the antimicrobial activity of different solvent extracts of roots of Vanda tessellata (Roxb.) Hook.Ex.G.Don. Indo Am J Pharm Res 4:2386–2391

    Google Scholar 

  • Hossain MM (2011) Therapeutic orchids: traditional uses and recent advances-an overview. Fitoterapia 82:102–140

    PubMed  Google Scholar 

  • Hullikere MM, Joshi C, Peethambar SK (2014) Green synthesis of silver nanoparticles using aqueous extract of Vanda tessellata leaves and its antioxidant and antibacterial activity. Res J Pharma Biol Chem Sci 5(5):395–401

    Google Scholar 

  • Ikhlaq M, Hafiz IA, Micheli M, Ahmad T, Abbasi NA, Standardi A (2010) In vitro storage of synthetic seeds: effect of different storage conditions and intervals on their conversion ability. Afr J Biotech 9:5712–5721

    Google Scholar 

  • Imsomboon T, Thammasiri K, Achinda PK, Chuenboonngarm N, Panvisavas N (2020) Cryopreservation of protocorm-like bodies of Vanda lilacina Teijsm. & Binn., a Thai orchid species, by V-cryo-plate and D-cryo-palte methods. Walailak J Sci & Tech 17:369–379

    Google Scholar 

  • Jain SM, Al-Khayri JM, Johnson DV (2011) Date palm biotechnology, 1st edn. Springer, Dordrecht

    Google Scholar 

  • Jiang H, Chen M-C, Lee Y-I (2017) In vitro germination and low-temperature seed storage of Cypripedium lentiginosum P.J. Cribb & S.C. Chen, a rare and endangered lady's slipper orchid. Sci Hortic 225:471–479

    CAS  Google Scholar 

  • Jitsopakul N, Thammasiri K, Ishikawa K (2008) Cryopreservation of Vanda coerulea protocorms by encapsulation—dehydration. CyoLetters 29:253–260

    Google Scholar 

  • Johansen DA (1940) Plant microtechnique, 1st edn. McGraw Hill Book Co, New York, pp 182–197

    Google Scholar 

  • Jualang AG, Devina D, Hartinie M, Sharon JS, Roslina J (2014) Asymbiotic seed germination and seedling development of Vanda dearei. Malay Appl Biol 43:25–33

    Google Scholar 

  • Khela S, Chadburn H (2014) Vanda tessellata. The IUCN Red List of Threatened Species 2014: e.T22486461A22488222. https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T22486461A22488222.en. Accessed 10 March 2020

  • Kim DH, Kang KW, Enkhtaivan G, Jan U, Sivanesan I (2019) Impact of activated charcoal, culture medium strength and thidiazuron on non-symbiotic in vitro seed germination of Pecteilis radiata (Thunb.) Raf. S Afr J Bot 124:144–150

    CAS  Google Scholar 

  • Kirtikar KR, Basu BD (1981) Indian medicinal plant. International Book Distributors, Dehradun, pp 2262–2263

    Google Scholar 

  • Kirtikar PK, Basu BD (1935) Indian Medicinal Plants. 2nd Ed. (Reprint Ed. 1975) Dehra Dun, M/s Bishen Singh Mahendra Pal Singh

  • Koirala D, Pradhan S, Pant B (2013) Asymbiotic seed germination and plantlet development of Coelogyne fuscescens Lindl., a medicinal orchid of Nepal. Sci World 11:97–100

    Google Scholar 

  • Kumar PKS, Subramoniam A, Pushpangadan P (2000) Aphrodisiac activity of Vanda tessellata (Roxb.) Hook. ex Don extract in male mice. Indian J Pharmacol 32:300–304

    Google Scholar 

  • Li YY, Chan C, Stahl C, Yeung EC (2018) Recent advances in orchid seed germination and micropropagation. In: Lee YI, Yeung ET (eds) Orchid propagation: from laboratories to greenhouses—methods and protocols. Springer Protocols Handbooks. Humana Press, New York. https://doi.org/10.1007/978-1-4939-7771-0_27

    Chapter  Google Scholar 

  • Litwack G (ed) (2005) Plant hormones: vitamins and hormones, vol 72. Academic Press, Elsevier Inc., San Diego

    Google Scholar 

  • Malabadi RB, Mulgund GS, Nataraja K (2004) Efficient regeneration of Vanda coerulea, an endangered orchid using thidiazuron. Plant Cell Tiss Organ Cult 76:289–293

    CAS  Google Scholar 

  • Matsumoto T (2017) Cryopreservation of plant genetic resources: conventional and new methods. Rev Agric Sci 5:13–20

    Google Scholar 

  • Meilasari D, Prayogo I (2016) Regeneration of plantlets through PLB (protocorm-like body) formation in Phalaenopsis ‘Join Angle X Sogo Musadian’. J Math Fund Sci 48:204–212

    CAS  Google Scholar 

  • Micheli M, Standardi A (2016) From somatic embryo to synthetic seed in Citrus spp. through the encapsulation technology. In: Germana MA, Lambardi M (eds) In vitro embryogenesis in higher plants. Springer, New York, pp 515–522

    Google Scholar 

  • Misra S (2007) Orchids of India—a Glimpse. Bishen Singh Mahendra Pal Singh, Dehradun, p 402

    Google Scholar 

  • Mohanraj R, Ananthan R, Bai VN (2009) Production and storage of synthetic seeds in Coelogyne breviscapa Lindl. Asian J Biotechnol 1:124–128

    CAS  Google Scholar 

  • Mujib A, Ali M, Tonk D, Isah T, Zafar N (2016) Embryogenesis in ornamental monocots: plant growth regulators as signalling element. In: Mujib A (ed) Somatic embryogenesis in ornamentals and its applications. Springer-India, New Delhi, pp 187–201. https://doi.org/10.1007/978-81-322-2683-3_12

    Chapter  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with Tobacco tissue culture. Physiol Plant 15:473–497

    CAS  Google Scholar 

  • Nagananda GS, Satishchandra N, Rajath S (2011) Regeneration of encapsulated protocorm like bodies of medicinally important vulnerable orchid Flickingeria nodosa (Dalz.) Seidenf. Int J Bot 7:310–313

    CAS  Google Scholar 

  • Nayak BS, Suresh R, Rao AV, Pillai GK, Davis EM, Ramkissoon V, McRae A (2005) Evaluation of wound healing activity of Vanda roxburghii R. Br (Orchidaceae): a preclinical study in a rat model. Int J Low Extrem Wounds 4:200–204

    CAS  PubMed  Google Scholar 

  • Nongdam P, Tikendra L (2014) Establishment of efficient in vitro regeneration protocol for rapid and mass propagation of Dendrobium chrysotoxum Lindl using seed culture. Sci World J. https://doi.org/10.1155/2014/740150

    Article  Google Scholar 

  • Nowak J, Pruski K (2002) Priming tissue cultured propagules. In: Low cost options for tissue culture technology in developing countries. Proceeding of a Technical Meeting organized by the Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, pp 68–81

  • Osborne DJ, McManus MT (2005) Hormones, signals and target cells in plant development. Cambridge University Press, Cambridge

    Google Scholar 

  • Ospina OJT, Bayman P (2009) Germinación simbiótica y asimbiótica en semillas de orquídeas epífitas. Acta Agron 58:270–276

    Google Scholar 

  • Panchaksharaiah DS, Chalageri G, Babu UV (2019) In vitro micropropagation of Vanda roxburghii: A medicinal orchid of the western ghats and determination of genetic fidelity using RAPD markers. Eur J Pharma Med Res 6:354–361

    Google Scholar 

  • Pandey NK, Joshi GC, Mudaiya RK et al (2003) Management and conservation of medicinal orchids of Kumaon and Garhwal Himalaya. In: Singh V, Jain AP (eds) Ethnoboany and medicinal plants of India and Nepal. Scientific, Jodhpur, pp 114–118

    Google Scholar 

  • Park HY, Kang KW, Kim DH, Sivanesan I (2018) In vitro propagation of Cymbidium goeringii Reichenbach fil. through direct adventitious shoot regeneration. Physiol Mol Biol Plants 24:307–313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parmar G, Pant B (2016) In vitro seed germination and seedling development of the orchid Coelogyne stricta (D. Don) Schltr. Afr J Biotechnol 15:105–109

    CAS  Google Scholar 

  • Pathan D, Ambavade S (2014) Investigation of anticonvulsant activity of Vanda roxburghii. J Pharmacogn Phytochem 2:95–99

    Google Scholar 

  • Paudel MR, Pradhan S, Pant B (2012) In vitro seed germination and seedling development of Esmeralda clarkei Rchb.f. (Orchidaceae). Plant Tissue Cult Biotechnol 22:107–111

    Google Scholar 

  • Paul S, Kumaria S, Tandon P (2012) An effective nutrient medium for asymbiotic seed germination and large-scale in vitro regeneration of Dendrobium hookerianum, a threatened orchid of northeast India. AoB PLANTS. https://doi.org/10.1093/aobpla/plr032

    Article  PubMed  PubMed Central  Google Scholar 

  • Poothong S, Reed BM (2016) Optimizing shoot culture media for Rubus germplasm: the effects of NH4+, NO3, and total nitrogen. Vitro Cell Dev Biol Plant 52:265–275

    CAS  Google Scholar 

  • Pradhan S, Tiruwa B, Subedee BR, Pant B (2014) In vitro germination and propagation of a threatened medicinal orchid, Cymbidium aloifolium (L.) Sw. through artificial seed. Asian Pac J Trop Biomed 4:971–976

    CAS  Google Scholar 

  • Prakash B, Bais RT, Singh P, Khan S (2013a) Effect of different pH on in vitro seed germination of Vanda tessellata (Roxb.) Hook. Ex.G an endangered medicinal orchid. Adv Life Sci Technol 8:4–7

    Google Scholar 

  • Prakash B, Khan S, Bais RT (2013b) Effect of different media on in vitro seed germination and protocorm formation of Vanda tessellata (Roxb.) Hook. Ex. G, an endangered medicinal orchid. Researcher 5(4):19–22

    Google Scholar 

  • Rahman MS, Hasan MF, Das R, Hossain MS, Rahman M (2009) In vitro micropropagation of orchid (Vanda tessellata L.) from shoot tip explants. J Bio-Sci 17:139–144

    Google Scholar 

  • Rai MK, Shekhawat NS (2014) Recent advances in genetic engineering for improvement of fruit crops. Plant Cell Tiss Org 116:1–15. https://doi.org/10.1007/s11240-013-0389-9

    Article  CAS  Google Scholar 

  • Raju CS, Aslam A, Shajahan A (2016) Germination and storability of calcium-alginate coated somatic embryos of mango ginger (Curcuma amada Roxb.). Hortic Environ Biotechnol 57:88–96

    CAS  Google Scholar 

  • Reed BM, Wada S, DeNoma J, Niedz RP (2013) Mineral nutrition influences physiological responses of pear in vitro. Vitro Cell Dev Biol Plant 49:699–709

    CAS  Google Scholar 

  • Rihan HZ, Kareem F, El-Mahrouk ME, Fuller MP (2017) Artificial seeds (principle, aspects and applications). Agronomy. https://doi.org/10.3390/agronomy7040071

    Article  Google Scholar 

  • Sailakshmi K, Sireesha JV, Vijayal K (2015) Antiulcer activity of petroleum-ether extract of Vanda tessellata Roxb. Indo Am J Pharm Res 5:2316–2319

    CAS  Google Scholar 

  • Sankar JA, Decruse SW (2014) Cryopreservation of Vanda wightii Rchb.f protocorms. M.Sc., Thesis. https://krishikosh.egranth.ac.in/displaybitstream?handle=1/5810029930

  • Sarmah DK, Borthakur M, Borua PK (2010) Artificial seed production from encapsulated PLBs regenerated from leaf base of Vanda coerulea Grifft. Ex. Lindl.: an endangered orchid. Curr Sci 98:686–690

    CAS  Google Scholar 

  • Seeni S, Latha PG (2000) In vitro multiplication and ecorehabilitation of the endangered Blue Vanda. Plant Cell Tiss Org Cult 61:1–8

    CAS  Google Scholar 

  • Seon KM, Kim DH, Kang KW, Sivanesan I (2018) Highly competent in vitro propagation of Thrixspermum japonicum (Miq.) Rchb.f., a rare epiphytic orchid. Vitro Cell Dev Biol Plant 54:302–308

    CAS  Google Scholar 

  • Sharma S, Shahzad A, da Silva JAT (2013) Synseed technology—a complete synthesis. Biotechnol Adv 31:186–207

    CAS  PubMed  Google Scholar 

  • Shengji P, Zhiwei Y (2018) Orchids and its uses in Chinese medicine and health care products. Med Res Innov 2:1–3

    Google Scholar 

  • Singh DR, Kishore R, Kumar R, Singh A (2016) Orchid preparations. Technical Bulletin No. -00. ICAR-National Research Centre for Orchids, Pakyong – 77 106, Sikkim, p. 33

  • Stewart SL, Kane ME (2006) Asymbiotic seed germination and in vitro seedling development of Habenaria macroceratitis (Orchidaceae), a rare Florida terrestrial orchid. Plant Cell Tiss Org Cult 86:147–158

    CAS  Google Scholar 

  • Takagi H (2000) Recent developments in cryopreservation of shoot apices of tropical species. In: Engelmann F, Takagi H (eds) Cryopreservation of tropical plant germplasm. Current research progress and application. Japan International Research Center for Agricultural Sciences, Tsukuba/Rome: International Plant Genetic Resources Institute, pp 178–193

  • Thaakur SR, Pokkula S (2013) Ameliorative effects of Vanda testacea in sciatic nerve transection-induced neuropathy in rats. Int J Pharma Bio Sci 4:271–284

    Google Scholar 

  • Thammasiri K, Soamkul L (2007) Cryopreservation of Vanda coerulea Griff. ex Lindl. seeds by vitrification. ScienceAsia 33:223–227

    Google Scholar 

  • Tran TH, Bui TV, Feng TY (2016) The role of auxin and cytokinin on somatic embryogenesis from the cell suspension cultures of the banana cultivar “Cau Man”. Acta Hortic 1114:219–226. https://doi.org/10.17660/ActaHortic.2016.1114.30

    Article  Google Scholar 

  • Uddin MJ, Rahman MM, Abdullah-Al-Mamun M, Sadik G (2015) Vanda roxburghii: an experimental evaluation of antinociceptive properties of a traditional epiphytic medicinal orchid in animal models. BMC Complement Altern Med 15:305. https://doi.org/10.1186/s12906-015-0833-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaidya B, Shrestha M, Joshee N (2000) Report on Nepalese orchid species with medicinal properties. Watanabe T, Takano A, Bista MS, Saiju HK (eds) Proceedings of Nepal-japan Jont Symposium on Conservation and Utilization of Himalayan Medicinal Resources, Kathmandu, Nepal

  • Valadares RB, Pereira MC, Otero JT, Cardoso EJ (2012) Narrow fungal mycorrhzal diversity in a population of the orchid Coppensia doniana. Biotropica 44(1):114–122. https://doi.org/10.1111/j.1744-7429.2011.00769.x

    Article  Google Scholar 

  • Varis S, Ahola S, Jaakola L, Aronen T (2017) Reliable and practical methods for cryopreservation of embryogenic cultures and cold storage of somatic embryos of Norway spruce. Cryobiol 76:8–17

    CAS  Google Scholar 

  • Vijaykumar K (2013) In vitro anti-oxidant activity of pet-ether extract of Vanda tessellata Roxb. Int Ayur Med J 1:1–4

    Google Scholar 

  • Wu GY, Wei XL, Wang X, Wei Y (2020) Induction of somatic embryogenesis in different explants from Ormosia henry Prain. Plant Cell Tiss Organ Cult. https://doi.org/10.1007/s11240-020-01822-5

    Article  Google Scholar 

  • Yeung EC, Rahman MH, Thorpe TA (1996) Comparative development of zygotic and microspore-derived embryos in Brassica napus. Int J Plant Sci 157(1):27–39. https://doi.org/10.1086/297317

    Article  Google Scholar 

  • Zahara M, Datta A, Boonkorkaew P, Mishra A (2018) Effect of plant growth regulators on the growth and direct shoot formation from leaf explants of the hybrid Phalaenopsis ‘Pink’. Acta Agric Slov 111:5–16

    Google Scholar 

  • Zhang K, Wu Y, Hang H (2019) Differential contributions of NO3-/NH4+ to nitrogen use in response to a variable inorganic supply in plantlets of two Brassicaceae species in vitro. Plant Methods. https://doi.org/10.1186/s13007-019-0473-1

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Science and Engineering Research Board, Department of Science and Technology, New Delhi, Government of India, for providing financial support as Extra Mural Research Project (EMR/2016/007795, dated 23–08-2017) to their laboratory.

Author information

Authors and Affiliations

Authors

Contributions

MSS, MM and PS: Conceptualization, investigation, methodology. MM and MSS: Writing the original draft. LR and PJ: Conceptualization, data curation. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Mahipal S. Shekhawat.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Human and animal rights

This research did not involve experiments with human or animal participants.

Additional information

Communicated by Qiao-Chun Wang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manokari, M., Latha, R., Priyadharshini, S. et al. Short-term cold storage of encapsulated somatic embryos and retrieval of plantlets in grey orchid (Vanda tessellata (Roxb.) Hook. ex G.Don). Plant Cell Tiss Organ Cult 144, 171–183 (2021). https://doi.org/10.1007/s11240-020-01899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-020-01899-y

Keywords

Navigation