Skip to main content
Log in

Long non-coding RNA LINC00460 promotes proliferation and inhibits apoptosis of cervical cancer cells by targeting microRNA-503-5p

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Long non-coding RNAs are associated with the pathogenesis of cancers. Moreover, LINC00460 is involved in the development of multiple cancers. However, the function of LINC00460 in cervical cancer (CC) remains inconclusive. Herein, CC tissues and tumor-adjacent tissues were collected from patients. The effect of LINC00460 silencing in cell proliferation and apoptosis in CC was explored in vitro and in vivo. Additionally, the interaction between LINC00460 and miR-503-5p was analyzed using dual luciferase reporter assay. The expression of genes and proteins was assayed using quantitative real-time PCR, western blotting and immunohistochemistry, cell viability using MTT assay, cell cycle distribution using flow cytometry, cell apoptosis using Annexin V staining, Hoechst staining and TUNEL assay. LINC00460 levels in CC tissues were higher than tumor-adjacent tissues. LINC00460 silencing suppressed proliferation and promoted apoptosis of CC cells as evidenced by decreased cell viability, inhibited proliferation-related protein and cell cycle protein expressions and G1/S transition, increased apoptotic cells and Hoechst-positive cells, and enhanced apoptosis-related protein expressions. LINC00460 could bind to miR-503-5p and LINC00460 silencing enhanced miR-503-5p expression and inhibited its target gene expressions in CC cells. MiR-503-5p inhibition reversed LINC00460 silencing-caused inhibition of cell proliferation and miR-503-5p target gene expressions, and promotion of cell apoptosis. LINC00460 silencing also attenuated tumor growth, promoted miR-503-5p levels and cell apoptosis, and inhibited cell proliferation and miR-503-5p target gene expressions in tumor tissues. Hence, LINC00460 functioned as an oncogene in CC that affected cell proliferation and apoptosis via sponging miR-503-5p. This study provides a novel therapeutic target for CC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

Code availability

Not applicable.

References

  1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, Jemal A, Yu XQ, He J (2016) Cancer statistics in China, 2015. CA Cancer J Clin 66(2):115–132. https://doi.org/10.3322/caac.21338

    Article  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68(6):394–424. https://doi.org/10.3322/caac.21492

    Article  Google Scholar 

  3. McGraw SL, Ferrante JM (2014) Update on prevention and screening of cervical cancer. World J Clin Oncol 5(4):744–752. https://doi.org/10.5306/wjco.v5.i4.744

    Article  Google Scholar 

  4. Hawes SE, Kiviat NB (2002) Are genital infections and inflammation cofactors in the pathogenesis of invasive cervical cancer? J Natl Cancer Inst 94(21):1592–1593. https://doi.org/10.1093/jnci/94.21.1592

    Article  Google Scholar 

  5. Xi J, Feng J, Zeng S, Huang P (2018) Long noncoding RNA UFC1 is activated by E2F1 and exerts oncogenic properties by functioning as a ceRNA of FOXP3. Cancer Med. https://doi.org/10.1002/cam4.1556

    Article  Google Scholar 

  6. Chandrasekaran KS, Sathyanarayanan A, Karunagaran D (2016) MicroRNA-214 suppresses growth, migration and invasion through a novel target, high mobility group AT-hook 1, in human cervical and colorectal cancer cells. Br J Cancer 115(6):741–751. https://doi.org/10.1038/bjc.2016.234

    Article  CAS  Google Scholar 

  7. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155–159. https://doi.org/10.1038/nrg2521

    Article  CAS  Google Scholar 

  8. Jiang MC, Ni JJ, Cui WY, Wang BY, Zhuo W (2019) Emerging roles of lncRNA in cancer and therapeutic opportunities. Am J Cancer Res 9(7):1354–1366

    CAS  Google Scholar 

  9. Sun NX, Ye C, Zhao Q, Zhang Q, Xu C, Wang SB, Jin ZJ, Sun SH, Wang F, Li W (2014) Long noncoding RNA-EBIC promotes tumor cell invasion by binding to EZH2 and repressing E-cadherin in cervical cancer. PLoS ONE 9(7):e100340. https://doi.org/10.1371/journal.pone.0100340

    Article  CAS  Google Scholar 

  10. Zhang S, Zhang G, Liu J (2016) Long noncoding RNA PVT1 promotes cervical cancer progression through epigenetically silencing miR-200b. APMIS 124(8):649–658. https://doi.org/10.1111/apm.12555

    Article  CAS  Google Scholar 

  11. Shi C, Yang Y, Yu J, Meng F, Zhang T, Gao Y (2017) The long noncoding RNA LINC00473, a target of microRNA 34a, promotes tumorigenesis by inhibiting ILF2 degradation in cervical cancer. Am J Cancer Res 7(11):2157–2168

    CAS  Google Scholar 

  12. Zhang JJ, Wang DD, Du CX, Wang Y (2018) Long noncoding RNA ANRIL promotes cervical cancer development by acting as a sponge of miR-186. Oncol Res 26(3):345–352. https://doi.org/10.3727/096504017X14953948675449

    Article  Google Scholar 

  13. Hu Y, Sun X, Mao C, Guo G, Ye S, Xu J, Zou R, Chen J, Wang L, Duan P, Xue X (2017) Upregulation of long noncoding RNA TUG1 promotes cervical cancer cell proliferation and migration. Cancer Med 6(2):471–482. https://doi.org/10.1002/cam4.994

    Article  CAS  Google Scholar 

  14. Zhang J, Yao T, Wang Y, Yu J, Liu Y, Lin Z (2016) Long noncoding RNA MEG3 is downregulated in cervical cancer and affects cell proliferation and apoptosis by regulating miR-21. Cancer Biol Ther 17(1):104–113. https://doi.org/10.1080/15384047.2015.1108496

    Article  CAS  Google Scholar 

  15. Wen Q, Liu Y, Lyu H, Xu X, Wu Q, Liu N, Yin Q, Li J, Sheng X (2017) Long noncoding RNA GAS5, which acts as a tumor suppressor via microRNA 21, regulates cisplatin resistance expression in cervical cancer. Int J Gynecol Cancer 27(6):1096–1108. https://doi.org/10.1097/IGC.0000000000001028

    Article  Google Scholar 

  16. Wang X, Mo FM, Bo H, Xiao L, Chen GY, Zeng PW, Huang YN, Lei Z, Yuan WJ, Chen ZH (2018) Upregulated expression of long non-coding RNA, LINC00460, suppresses proliferation of colorectal cancer. J Cancer 9(16):2834–2843. https://doi.org/10.7150/jca.26046

    Article  CAS  Google Scholar 

  17. Zhang S, Xu J, Wang H, Guo H (2019) Downregulation of long noncoding RNA LINC00460 expression suppresses tumor growth in vitro and in vivo in gastric cancer. Cancer Biomark 24(4):429–437. https://doi.org/10.3233/CBM-182177

    Article  CAS  Google Scholar 

  18. Xing H, Wang S, Li Q, Ma Y, Sun P (2018) Long noncoding RNA LINC00460 targets miR-539/MMP-9 to promote meningioma progression and metastasis. Biomed Pharmacother 105:677–682. https://doi.org/10.1016/j.biopha.2018.06.005

    Article  CAS  Google Scholar 

  19. Liu X, Wen J, Wang H, Wang Y (2018) Long non-coding RNA LINC00460 promotes epithelial ovarian cancer progression by regulating microRNA-338-3p. Biomed pharmacother 108:1022–1028. https://doi.org/10.1016/j.biopha.2018.09.103

    Article  CAS  Google Scholar 

  20. Li K, Sun D, Gou Q, Ke X, Gong Y, Zuo Y, Zhou JK, Guo C, Xia Z, Liu L, Li Q, Dai L, Peng Y (2018) Long non-coding RNA linc00460 promotes epithelial-mesenchymal transition and cell migration in lung cancer cells. Cancer Lett 420:80–90. https://doi.org/10.1016/j.canlet.2018.01.060

    Article  CAS  Google Scholar 

  21. Sun Y, Li L, Xing S, Pan Y, Shi Y, Zhang L, Shen Q (2017) miR-503-3p induces apoptosis of lung cancer cells by regulating p21 and CDK4 expression. Cancer Biomark 20(4):597–608. https://doi.org/10.3233/CBM-170585

    Article  CAS  Google Scholar 

  22. Park GB, Kim D (2019) MicroRNA-503-5p inhibits the CD97-mediated JAK2/STAT3 pathway in metastatic or paclitaxel-resistant ovarian cancer cells. Neoplasia 21(2):206–215. https://doi.org/10.1016/j.neo.2018.12.005

    Article  CAS  Google Scholar 

  23. Yin ZL, Wang YL, Ge SF, Guo TT, Wang L, Zheng XM, Liu J (2015) Reduced expression of miR-503 is associated with poor prognosis in cervical cancer. Eur Rev Med Pharmacol Sci 19(21):4081–4085

    Google Scholar 

  24. Li G, Kong Q (2019) LncRNA LINC00460 promotes the papillary thyroid cancer progression by regulating the LINC00460/miR-485-5p/Raf1 axis. Biol Res 52(1):61. https://doi.org/10.1186/s40659-019-0269-9

    Article  CAS  Google Scholar 

  25. Wang F, Liang S, Liu X, Han L, Wang J, Du Q (2018) LINC00460 modulates KDM2A to promote cell proliferation and migration by targeting miR-342-3p in gastric cancer. OncoTargets Ther 11:6383–6394. https://doi.org/10.2147/OTT.S169307

    Article  CAS  Google Scholar 

  26. Lian Y, Yan C, Xu H, Yang J, Yu Y, Zhou J, Shi Y, Ren J, Ji G, Wang K (2018) A novel lncRNA, LINC00460, affects cell proliferation and apoptosis by regulating KLF2 and CUL4A expression in colorectal cancer. Mol Ther Nucleic Acids 12:684–697. https://doi.org/10.1016/j.omtn.2018.06.012

    Article  CAS  Google Scholar 

  27. Kadam CY, Abhang SA (2016) Apoptosis markers in breast cancer therapy. Adv Clin Chem 74:143–193. https://doi.org/10.1016/bs.acc.2015.12.003

    Article  CAS  Google Scholar 

  28. Chang SW, Yue J, Wang BC, Zhang XL (2015) miR-503 inhibits cell proliferation and induces apoptosis in colorectal cancer cells by targeting E2F3. Int J Clin Exp Pathol 8(10):12853–12860

    CAS  Google Scholar 

  29. Xu YY, Wu HJ, Ma HD, Xu LP, Huo Y, Yin LR (2013) MicroRNA-503 suppresses proliferation and cell-cycle progression of endometrioid endometrial cancer by negatively regulating cyclin D1. FEBS J 280(16):3768–3779. https://doi.org/10.1111/febs.12365

    Article  CAS  Google Scholar 

  30. Fu Y, Meng Y, Gu X, Tian S, Hou X, Ji M (2019) miR-503 expression is downregulated in cervical cancer and suppresses tumor growth by targeting AKT2. J Cell Biochem. https://doi.org/10.1002/jcb.28099

    Article  Google Scholar 

  31. Sun Q, Li Q, Xie F (2019) LncRNA-MALAT1 regulates proliferation and apoptosis of ovarian cancer cells by targeting miR-503-5p. OncoTargets and therapy 12:6297–6307. https://doi.org/10.2147/OTT.S214689

    Article  CAS  Google Scholar 

  32. Qi H, Wen B, Wu Q, Cheng W, Lou J, Wei J, Huang J, Yao X, Weng G (2018) Long noncoding RNA SNHG7 accelerates prostate cancer proliferation and cycle progression through cyclin D1 by sponging miR-503. Biomed Pharmacother 102:326–332. https://doi.org/10.1016/j.biopha.2018.03.011

    Article  CAS  Google Scholar 

  33. Wang AH, Jin CH, Cui GY, Li HY, Wang Y, Yu JJ, Wang RF, Tian XY (2020) MIR210HG promotes cell proliferation and invasion by regulating miR-503-5p/TRAF4 axis in cervical cancer. Aging (Albany, NY) 12(4):3205–3217. https://doi.org/10.18632/aging.102799

    Article  CAS  Google Scholar 

  34. Kong YG, Cui M, Chen SM, Xu Y, Xu Y, Tao ZZ (2018) LncRNA-LINC00460 facilitates nasopharyngeal carcinoma tumorigenesis through sponging miR-149-5p to up-regulate IL6. Gene 639:77–84. https://doi.org/10.1016/j.gene.2017.10.006

    Article  CAS  Google Scholar 

  35. Xue K, Li J, Nan S, Zhao X, Xu C (2019) Downregulation of LINC00460 decreases STC2 and promotes autophagy of head and neck squamous cell carcinoma by up-regulating microRNA-206. Life Sci 231:116459. https://doi.org/10.1016/j.lfs.2019.05.015

    Article  CAS  Google Scholar 

  36. Altomare DA, Lyons GE, Mitsuuchi Y, Cheng JQ, Testa JR (1998) Akt2 mRNA is highly expressed in embryonic brown fat and the AKT2 kinase is activated by insulin. Oncogene 16(18):2407–2411. https://doi.org/10.1038/sj.onc.1201750

    Article  CAS  Google Scholar 

  37. Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9(1):59–71. https://doi.org/10.1111/j.1582-4934.2005.tb00337.x

    Article  CAS  Google Scholar 

  38. Xu J, Wan X, Chen X, Fang Y, Cheng X, Xie X, Lu W (2016) miR-2861 acts as a tumor suppressor via targeting EGFR/AKT2/CCND1 pathway in cervical cancer induced by human papillomavirus virus 16 E6. Sci Rep 6:28968. https://doi.org/10.1038/srep28968

    Article  CAS  Google Scholar 

  39. Xu J, Xu S, Fang Y, Chen T, Xie X, Lu W (2019) Cyclin-dependent kinase 9 promotes cervical cancer development via AKT2/p53 pathway. IUBMB Life 71(3):347–356. https://doi.org/10.1002/iub.1983

    Article  CAS  Google Scholar 

  40. Smeti I, Watabe I, Savary E, Fontbonne A, Zine A (2014) HMGA2, the architectural transcription factor high mobility group, is expressed in the developing and mature mouse cochlea. PLoS ONE 9(2):e88757. https://doi.org/10.1371/journal.pone.0088757

    Article  CAS  Google Scholar 

  41. Wang WY, Cao YX, Zhou X, Wei B, Zhan L, Fu LT (2018) HMGA2 gene silencing reduces epithelial-mesenchymal transition and lymph node metastasis in cervical cancer through inhibiting the ATR/Chk1 signaling pathway. Am J Transl Res 10(10):3036–3052

    CAS  Google Scholar 

  42. Li W, Li J, Mu H, Guo M, Deng H (2019) MiR-503 suppresses cell proliferation and invasion of gastric cancer by targeting HMGA2 and inactivating WNT signaling pathway. Cancer Cell Int 19:164. https://doi.org/10.1186/s12935-019-0875-1

    Article  CAS  Google Scholar 

  43. Yang T, Zhang H, Cai SY, Shen YN, Yuan SX, Yang GS, Wu MC, Lu JH, Shen F (2013) Elevated SHOX2 expression is associated with tumor recurrence of hepatocellular carcinoma. Ann Surg Oncol 20(Suppl 3):S644–649. https://doi.org/10.1245/s10434-013-3132-1

    Article  Google Scholar 

  44. Zhang YA, Zhou Y, Luo X, Song K, Ma X, Sathe A, Girard L, Xiao G, Gazdar AF (2016) SHOX2 is a potent independent biomarker to predict survival of WHO grade II–III diffuse gliomas. EBioMedicine 13:80–89. https://doi.org/10.1016/j.ebiom.2016.10.040

    Article  Google Scholar 

  45. Yi J, Jin L, Chen J, Feng B, He Z, Chen L, Song H (2017) MiR-375 suppresses invasion and metastasis by direct targeting of SHOX2 in esophageal squamous cell carcinoma. Acta Biochim Biophys Sin (Shanghai) 49(2):159–169. https://doi.org/10.1093/abbs/gmw131

    Article  CAS  Google Scholar 

  46. Hong S, Noh H, Teng Y, Shao J, Rehmani H, Ding HF, Dong Z, Su SB, Shi H, Kim J, Huang S (2014) SHOX2 is a direct miR-375 target and a novel epithelial-to-mesenchymal transition inducer in breast cancer cells. Neoplasia 16(4):279–290. https://doi.org/10.1016/j.neo.2014.03.010

    Article  CAS  Google Scholar 

  47. Huang J, Chen YX, Zhang B (2020) IGF2-AS affects the prognosis and metastasis of gastric adenocarcinoma via acting as a ceRNA of miR-503 to regulate SHOX2. Gastric Cancer 23(1):23–38. https://doi.org/10.1007/s10120-019-00976-2

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

T.-m.S. conceived and designed the experiments. Material preparation, data collection and analysis were performed by L.L., B.X., T.J. X.-l.W. and H.Y. The first draft of the manuscript was written by L.L. and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Tie-mei Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Animal experiments were performed in accordance with National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. All experiments were approved by Ethics Committee of Shengjing Hospital of China Medical University.

Informed consent

Informed consent was obtained from all patients. Informed consent for publication was obtained from all participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Xin, B., Jiang, T. et al. Long non-coding RNA LINC00460 promotes proliferation and inhibits apoptosis of cervical cancer cells by targeting microRNA-503-5p. Mol Cell Biochem 475, 1–13 (2020). https://doi.org/10.1007/s11010-020-03853-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03853-0

Keywords

Navigation