Skip to main content
Log in

Low-angle–dependent CdS@SiO2 photonic crystal hydrogel material for visual detection and removal of uranyl ions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A low-angle–dependent photonic crystal hydrogel (LAD-PCH) material was developed to simultaneously detect and remove uranyl ions (UO22+). Different from traditional SiO2 photonic crystal hydrogel with the problem of angle dependency, the LAD-PCH material overcomes the restriction of observation direction. The LAD-PCH is a composite material with the photonic crystal array of 180-nm monodisperse CdS@SiO2 particles embedded into the functional hydrogel. As one UO22+ can bind to multiple carboxyl groups and amide groups, the functional hydrogel fabricated by acrylic acid and acrylamide will shrink after chelating. These changes in the hydrogel volume alter the array spacing and trigger a blue shift of diffraction wavelength and naked-eye visual color changes of LAD-PCH. The color can vary from orange-red to orange, yellow, green, and cyan, corresponding to the determination range of 100 pM–100 μM. The LAD-PCH material detects UO22+ sensitively as the lowest detectable concentration is about 100 pM, and removes UO22+ high-efficiently as the maximum adsorption capacity of U(VI) is about 1010 mg g−1 at 298 K. This LAD-PCH material is convenient and has potential to simultaneously monitor and remove UO22+ from uranium-polluted water.

Schematic representation of the low-angle–dependent photonic crystal hydrogel (LAD-PCH) material for UO22+ detection and removal: The structural colors of LAD-PCH material overcome the restriction of observation angles. After the ligands complex with UO22+, the networks of LAD-PCH show different degrees of shrinkage; these volume changes of hydrogel trigger obvious naked-eye visual color changes of LAD-PCH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cowart JB, Burnett WC (1994) The distribution of uranium and thorium decay-series radionuclides in the environment—a review. J Environ Qual 23(4):651–662. https://doi.org/10.2134/jeq1994.00472425002300040005x

    Article  CAS  Google Scholar 

  2. Wang KX, Chen JS (2011) Extended structures and physicochemical properties of uranyl-organic compounds. Acc Chem Res 44(7):531–540. https://doi.org/10.1021/ar200042t

    Article  CAS  Google Scholar 

  3. Rathore D (2008) Advances in technologies for the measurement of uranium in diverse matrices. Talanta 77(1):9–20. https://doi.org/10.1016/j.talanta.2008.06.019

    Article  CAS  Google Scholar 

  4. Santos JS, Teixeira LS, Dos Santos WN, Lemos VA, Godoy JM, Ferreira SL (2010) Uranium determination using atomic spectrometric techniques: an overview. Anal Chim Acta 674(2):143–156. https://doi.org/10.1016/j.aca.2010.06.010

    Article  CAS  Google Scholar 

  5. Farzin L, Shamsipur M, Sheibani S, Samandari L, Hatami Z (2019) A review on nanomaterial-based electrochemical, optical, photoacoustic and magnetoelastic methods for determination of uranyl cation. Microchim Acta 186(5):289. https://doi.org/10.1007/s00604-019-3426-5

    Article  CAS  Google Scholar 

  6. Wang J, Zhuang S (2019) Extraction and adsorption of U(VI) from aqueous solution using affinity ligand-based technologies: an overview. Rev Environ Sci Bio:1–16. https://doi.org/10.1007/s11157-019-09507-y

  7. Zhang Z, Zhang D, Shi C, Liu W, Chen L, Miao Y, Diwu J, Li J, Wang S (2019) 3, 4-Hydroxypyridinone-modified carbon quantum dot as a highly sensitive and selective fluorescent probe for the rapid detection of uranyl ions. Environ Sci-Nano 6(5):1457–1465. https://doi.org/10.1039/C9EN00148D

    Article  CAS  Google Scholar 

  8. Yun W, Chen L, Yi Z, Yi Y, Tang Y, Yang L (2019) Entropy-driven catalytic reaction-induced hairpin structure switching for fluorometric detection of uranyl ions. Microchim Acta 186(9):653. https://doi.org/10.1007/s00604-019-3767-0

    Article  CAS  Google Scholar 

  9. Xiong XH, Yu ZW, Gong LL, Tao Y, Gao Z, Wang L, Yin WH, Yang LX, Luo F (2019) Ammoniating covalent organic framework (COF) for high-performance and selective extraction of toxic and radioactive uranium ions. Adv Sci 6(16):1900547. https://doi.org/10.1002/advs.201900547

    Article  CAS  Google Scholar 

  10. Ge J, Yin Y (2011) Responsive photonic crystals. Angew Chem Int Ed 50(7):1492–1522. https://doi.org/10.1002/anie.200907091

    Article  CAS  Google Scholar 

  11. Zhao Y, Xie Z, Gu H, Zhu C, Gu Z (2012) Bio-inspired variable structural color materials. Chem Soc Rev 41(8):3297–3317. https://doi.org/10.1039/c2cs15267c

    Article  CAS  Google Scholar 

  12. Fenzl C, Hirsch T, Wolfbeis OS (2014) Photonic crystals for chemical sensing and biosensing. Angew Chem Int Ed 53(13):3318–3335. https://doi.org/10.1002/anie.201307828

    Article  CAS  Google Scholar 

  13. Kanai T, Yano H, Kobayashi N, Sawada T (2017) Enhancement of thermosensitivity of gel-immobilized tunable colloidal photonic crystals with anisotropic contraction. ACS Macro Lett 6(11):1196–1200. https://doi.org/10.1021/acsmacrolett.7b00780

    Article  CAS  Google Scholar 

  14. Ye BF, Zhao YJ, Cheng Y, Li TT, Xie ZY, Zhao XW, Gu ZZ (2012) Colorimetric photonic hydrogel aptasensor for the screening of heavy metal ions. Nanoscale 4(19):5998–6003. https://doi.org/10.1039/c2nr31601c

    Article  CAS  Google Scholar 

  15. Yan D, Li R, Lu W, Piao C, Qiu L, Meng Z, Wang S (2019) Flexible construction of cellulose photonic crystal optical sensing nano-materials detecting organic solvents. Analyst 144(6):1892–1897. https://doi.org/10.1039/C8AN01236A

    Article  CAS  Google Scholar 

  16. Chen Q, Shi W, Cheng M, Liao S, Zhou J, Wu Z (2018) Molecularly imprinted photonic hydrogel sensor for optical detection of L-histidine. Microchim Acta 185(12):557. https://doi.org/10.1007/s00604-018-3080-3

    Article  CAS  Google Scholar 

  17. Xiao F, Li G, Wu Y, Chen Q, Wu Z, Yu R (2016) Label-free photonic crystal-based β-lactamase biosensor for β-lactam antibiotic and β-lactamase inhibitor. Anal Chem 88(18):9207–9012. https://doi.org/10.1021/acs.analchem.6b02457

    Article  CAS  Google Scholar 

  18. Li G, Xiao F, Liao S, Chen Q, Zhou J, Wu Z, Yu R (2018) Label-free 2D colloidal photonic crystal hydrogel biosensor for urea and urease inhibitor. Sensors Actuators B Chem 277:591–597. https://doi.org/10.1016/j.snb.2018.09.059

    Article  CAS  Google Scholar 

  19. Su X, Xia H, Zhang S, Tang B, Wu S (2017) Vivid structural colors with low angle dependence from long-range ordered photonic crystal films. Nanoscale 9(9):3002–3009. https://doi.org/10.1039/C6NR07523A

    Article  CAS  Google Scholar 

  20. Xiao F, Sun Y, Du W, Shi W, Wu Y, Liao S, Wu Z, Yu R (2017) Smart photonic crystal hydrogel material for uranyl ion monitoring and removal in water. Adv Funct Mater 27(42):1702147. https://doi.org/10.1002/adfm.201702147

    Article  CAS  Google Scholar 

  21. Zhan Q, Qian J, Li X, He S (2009) A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging. Nanotechnology 21(5):055704. https://doi.org/10.1088/0957-4484/21/5/055704

    Article  CAS  Google Scholar 

  22. Guerrero-Martínez A, Pérez-Juste J, Liz-Marzán LM (2010) Recent progress on silica coating of nanoparticles and related nanomaterials. Adv Mater 22(11):1182–1195. https://doi.org/10.1002/adma.200901263

    Article  CAS  Google Scholar 

  23. Guo P, Xu J, Zhuang X, Hu W, Zhu X, Zhou H, Tang L, Pan A (2013) Surface plasmon resonance enhanced band-edge emission of CdS-SiO2 core-shell nanowires with gold nanoparticles attached. J Mater Chem C 1(3):566–571. https://doi.org/10.1039/C2TC00088A

    Article  CAS  Google Scholar 

  24. Zhu S, Leng Y, Yan M, Tuo X, Yang J, Almásy L, Tian Q, Sun G, Zou L, Li Q (2018) Bare and polymer coated iron oxide superparamagnetic nanoparticles for effective removal of U(VI) from acidic and neutral aqueous medium. Appl Surf Sci 447:381–387. https://doi.org/10.1016/j.apsusc.2018.04.016

    Article  CAS  Google Scholar 

  25. Zhang S, Shu X, Zhou Y, Huang L, Hua D (2014) Highly efficient removal of uranium (VI) from aqueous solutions using poly (acrylic acid)-functionalized microspheres. Chem Eng J 253:55–62. https://doi.org/10.1016/j.cej.2014.05.036

    Article  CAS  Google Scholar 

  26. Wang F, Xue Y, Lu B, Luo H, Zhu J (2019) Fabrication and characterization of angle-independent structurally colored films based on CdS@SiO2 nanospheres. Langmuir 35(14):4918–4926. https://doi.org/10.1021/acs.langmuir.8b04193

    Article  CAS  Google Scholar 

  27. Wang Z, Chen J, Xue X, Hu Y (2007) Synthesis of monodispersed CdS nanoballs through γ-irradiation route and building core-shell structure CdS@SiO2. Mater Res Bull 42(12):2211–2218. https://doi.org/10.1016/j.materresbull.2007.01.002

    Article  CAS  Google Scholar 

  28. Zhao J, Yu K, Hu Y, Li S, Tan X, Chen F, Yu Z (2011) Discharge behavior of mg-4 wt% Ga-2 wt% hg alloy as anode for seawater activated battery. Electrochim Acta 56(24):8224–8231. https://doi.org/10.1016/j.electacta.2011.06.065

    Article  CAS  Google Scholar 

  29. Mayonado G, Mian SM, Robbiano V, Cacialli F (2015) Investigation of the Bragg-Snell Law in photonic crystals. American Assoc of Phy Teachers under a Creative Commons Attr 30 license. https://doi.org/10.1119/bfy.2015.pr.015

  30. Su X, Jiang Y, Sun X, Wu S, Tang B, Niu W, Zhang S (2017) Fabrication of tough photonic crystal patterns with vivid structural colors by direct handwriting. Nanoscale 9(45):17877–17883. https://doi.org/10.1039/C7NR06570A

    Article  CAS  Google Scholar 

  31. Su X, Chang J, Wu S, Tang B, Zhang S (2016) Synthesis of highly uniform Cu2O spheres by a two-step approach and their assembly to form photonic crystals with a brilliant color. Nanoscale 8(11):6155–6161. https://doi.org/10.1039/C5NR08401F

    Article  CAS  Google Scholar 

  32. Ulusoy Hİ, Şimşek S (2013) Removal of uranyl ions in aquatic mediums by using a new material: gallocyanine grafted hydrogel. J Hazard Mater 254:397–405. https://doi.org/10.1016/j.jhazmat.2013.04.004

    Article  CAS  Google Scholar 

  33. WHO (2017) Guidelines for drinking-water quality: fourth edition incorporating the first addendum. World Health Organization Publication, Geneva

    Google Scholar 

  34. Xu M, Wang T, Gao P, Zhao L, Zhou L, Hua D (2019) Highly fluorescent conjugated microporous polymers for concurrent adsorption and detection of uranium. J Mater Chem A 7(18):11214–11222. https://doi.org/10.1039/C8TA11764K

    Article  CAS  Google Scholar 

  35. Cui W, Zhang C, Jiang W, Li F, Liang R, Liu J, Qiu J (2020) Regenerable and stable sp2 carbon-conjugated covalent organic frameworks for selective detection and extraction of uranium. Nat Commun 11(1):1–10. https://doi.org/10.1038/s41467-020-14289-x

    Article  CAS  Google Scholar 

  36. Zhang C, Cui W, Jiang W, Li F, Wu Y, Liang R, Qiu J (2020) Simultaneous sensitive detection and rapid adsorption of UO22+ based on a post-modified sp2 carbon-conjugated covalent organic framework. Environ Sci-Nano 7:842–850. https://doi.org/10.1039/C9EN01225G

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (21874037 and 21675045) and the International Scientific and Technological Cooperation Projects of China (2012DFR40480).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zhou or Zhaoyang Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 25711 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Cheng, M., Chen, Q. et al. Low-angle–dependent CdS@SiO2 photonic crystal hydrogel material for visual detection and removal of uranyl ions. Microchim Acta 187, 476 (2020). https://doi.org/10.1007/s00604-020-04456-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-020-04456-8

Keywords

Navigation