Skip to main content
Log in

Coexistence of Two Male-Killers and Their Impact on the Development of Oriental Tea Tortrix Homona magnanima

  • Invertebrate Microbiology
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Male-killing, the death of male offspring induced by maternally transmitted microbes, is classified as early, or late, male-killing. The primary advantage afforded by early male-killing, which typically occurs during embryogenesis, is the reallocation of resources to females, that would have otherwise been consumed by males. Meanwhile, the key advantage of late male-killing, which typically occurs during late larval development, is the maximized potential for horizontal transmission. To date, no studies have reported on the associated developmental and physiological effects of host coinfection with early and late male-killers, which may have a significant impact on the population dynamics of the male-killers. Here we used a lepidopteran tea pest Homona magnanima as a model, which is a unique system wherein an early male-killer (a Spiroplasma bacterium) and a late male-killer (an RNA virus) can coexist in nature. An artificially established matriline, coinfected with both Spiroplasma and RNA virus, exhibited embryonic death (early male-killing) as seen in the host line singly infected with Spiroplasma. Moreover, the coinfected line also exhibited developmental retardation and low pupal weight similar to the host line singly infected with the RNA virus. A series of field surveys revealed that Spiroplasma-RNA virus coinfection occurs in nature at a low frequency. Hence, although the two male-killers are capable of coexisting within the H. magnanima population independently, high associated fitness cost appears to limit the prevalence of male-killer coinfection in the field host population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Buchner P (1965) Endosymbiosis of animals with plant microorganisms. John Wiley & Sons Inc., New York

    Google Scholar 

  2. Bourtzis K, Miller TA (2003) Insect symbiosis. CRC Press, Florida

    Book  Google Scholar 

  3. Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8:218–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Vavre F, Girin C, Boulétreau M (1999) Phylogenetic status of a fecundity-enhancing Wolbachia that does not induce thelytoky in Trichogramma. Insect Mol Biol 8:67–72

    Article  CAS  PubMed  Google Scholar 

  5. Fry AJ, Rand DM (2002) Wolbachia interactions that determine Drosophila melanogaster survival. Evolution 56:1976–1981

    Article  PubMed  Google Scholar 

  6. Brownlie JC, Cass BN, Riegler M, et al (2009) Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress. PLoS Pathog 5:e1000368. https://doi.org/10.1371/journal.ppat.1000368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Duron O, Bouchon D, Boutin S, et al (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:27 http://www.biomedcentral.com/1741-7007/6/27

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hurst GDD, Majerus MEN, Walker LE (1992) Cytoplasmic male killing elements in Adalia bipunctata (Linnaeus) (Coleoptera: Coccinellidae). Heredity 69:84–91

    Article  Google Scholar 

  9. Majerus MEN, von der Schulenburg JHG, Zakharov IA (2000) Multiple causes of male-killing in a single sample of the two-spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae) from Moscow. Heredity 84:605–609

    Article  PubMed  Google Scholar 

  10. Andreadis TG, Hall DW (1979) Significance of transovarial infections of Amblyospora sp (Microspora: Thelohaniidae) in reaction to parasite maintenance in the mosquito Culex salinarius. J Invertebr Pathol 34:152–157

    Article  CAS  PubMed  Google Scholar 

  11. Sweeney AW, Hazard EI, Graham MF (1985) Intermediate host for an Amblyospora sp. (Microspora) infecting the mosquito, Culex annulirostris. J Invertebr Pathol 46:98–102

    Article  CAS  PubMed  Google Scholar 

  12. Morimoto S, Nakai M, Ono A, Kunimi Y (2001) Late male-killing phenomenon found in a Japanese population of the oriental tea tortrix, Homona magnanima (Lepidoptera: Tortricidae). Heredity 87:435–440

    Article  CAS  PubMed  Google Scholar 

  13. Nakanishi K, Hoshino M, Nakai M, Kunimi Y (2008) Novel RNA sequences associated with late male killing in Homona magnanima. P Roy Soc B-Biol Sci 275:1249–1254

    CAS  Google Scholar 

  14. Kageyama D, Yoshimura K, Sugimoto TN, et al (2017) Maternally transmitted non-bacterial male killer in Drosophila biauraria. Biol Lett 13:20170476. https://doi.org/10.1098/rsbl.2017.0476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hurst GDD, Majerus MEN (1993) Why do maternally inherited microorganisms kill males? Heredity 71:81–95

    Article  Google Scholar 

  16. Kondo N, Shimada M, Fukatsu T (2005) Infection density of Wolbachia endosymbiont affected by co-infection and host genotype. Biol Lett 1:488–491

    Article  PubMed  PubMed Central  Google Scholar 

  17. Arai H, Hirano T, Akizuki N, et al (2019) Multiple infection and reproductive manipulations of Wolbachia in Homona magnanima (Lepidoptera: Tortricidae). Microb Ecol 77:257–266

    Article  PubMed  Google Scholar 

  18. Watanabe M, Miura K, Hunter MS, Wajnberg E (2011) Superinfection of cytoplasmic incompatibility-inducing Wolbachia is not additive in Orius strigicollis (Hemiptera: Anthocoridae). Heredity 106:642–648

    Article  CAS  PubMed  Google Scholar 

  19. Nakamura Y, Yukuhiro F, Matsumura M, Noda H (2012) Cytoplasmic incompatibility involving Cardinium and Wolbachia in the white-backed planthopper Sogatella furcifera (Hemiptera: Delphacidae). Appl Entomol Zool 47:273–283

    Article  Google Scholar 

  20. Zhu LY, Zhang KJ, Zhang YK, et al (2012) Wolbachia strengthens Cardinium-induced cytoplasmic incompatibility in the spider mite Tetranychus piercei McGregor. Curr Microbiol 65:516–523

    Article  CAS  PubMed  Google Scholar 

  21. Goto S, Anbutsu H, Fukatsu T (2006) Asymmetrical interactions between Wolbachia and Spiroplasma endosymbionts coexisting in the same insect host. Appl Environ Microbiol 72:4805–4810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Teixeira L, Ferreira Á, Ashburner M (2008) The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol 6:e2. https://doi.org/10.1371/journal.pbio.1000002

    Article  CAS  PubMed  Google Scholar 

  23. Hedges LM, Brownlie JC, O’Neill SL, Johnson KN (2008) Wolbachia and virus protection in insects. Science 322:702

    Article  CAS  PubMed  Google Scholar 

  24. Terradas G, McGraw EA (2017) Wolbachia-mediated virus blocking in the mosquito vector Aedes aegypti. Curr Opin Insect Sci 22:37–44

    Article  PubMed  Google Scholar 

  25. Hurst GDD, Jiggins FM, von der Schulenburg JHG et al (1999) Male–killing Wolbachia in two species of insect. P Roy Soc B-Biol Sci 266:735–740

    Article  Google Scholar 

  26. Hurst GDD, von der Schulenburg JHG, Majerus TMO et al (1999) Invasion of one insect species, Adalia bipunctata, by two different male-killing bacteria. Insect Mol Biol 8:133–139

    Article  CAS  PubMed  Google Scholar 

  27. Werren JH, Hurst GDD, Zhang W, et al (1994) Rickettsial relative associated with male killing in the ladybird beetle (Adalia bipunctata). J Bacteriol 176:388–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hurst LD (1991) The incidences and evolution of cytoplasmic male killers. P Roy Soc B-Biol Sci 244:91–99

    Article  Google Scholar 

  29. Majerus MEN, Hurst GDD (1997) Ladybirds as a model system for the study of male-killing symbionts. Entomophaga 42:13–20

    Article  Google Scholar 

  30. Hurst GDD, Hurst LD, Majerus MEN (1997) Cytoplasmic sex-ratio distorters. In: O’Neill SL, Hoffmann AA, Werren JH (eds) Influential passengers. Oxford University Press, Oxford, pp 125–154

    Google Scholar 

  31. Arai H, Lin SR, Nakai M, et al (2019) Closely related male-killing and nonmale-killing Wolbachia strains in the oriental tea tortrix Homona magnanima. Microb Ecol:1–10

  32. Tsugeno Y, Koyama H, Takamatsu T, et al (2017) Identification of an early male-killing agent in the oriental tea tortrix, Homona magnanima. J Hered 108:553–560

    Article  CAS  PubMed  Google Scholar 

  33. Hoshino M, Nakanishi K, Nakai M, Kunimi Y (2008) Gross morphology and histopathology of male-killing strain larvae in the oriental tea tortrix, Homona magnanima (Lepidoptera: Tortricidae). Appl Entomol Zool 43:119–125

    Article  Google Scholar 

  34. Nishino M, Fujita R, Nakai M, et al (2018) Late male killing caused by novel RNA viruses Partitiviridae in a tea pest, Homona magnanima. Wolbachia 2018, Tenth International Wolbachia Conference, Salem MA, USA

  35. Zhou W, Rousset F, O’Neil S (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Biol Sci 265:509–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. von der Schulenburg JHG, Majerus TMO, Dorzhu CM, et al (2000) Evolution of male-killing Spiroplasma (Procaryotae: Mollicutes) inferred from ribosomal spacer sequences. J Gen Appl Microbiol 46:95–98

    Article  Google Scholar 

  37. Abràmoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with ImageJ. Biophoton Int 11:36–42

    Google Scholar 

  38. Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4 arXiv preprint arXiv:1406.5823

  39. Dunn AM, Smith JE (2001) Microsporidian life cycles and diversity: the relationship between virulence and transmission. Microbes Infect 3:381–388

    Article  CAS  PubMed  Google Scholar 

  40. Ahmed MZ, Li SJ, Xue X, et al (2015) The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission. PLoS Pathog 11:e1004672

    Article  CAS  PubMed Central  Google Scholar 

  41. Jaenike J, Polak M, Fiskin A, et al (2007) Interspecific transmission of endosymbiotic Spiroplasma by mites. Biol Lett 3:23–25

    Article  CAS  PubMed  Google Scholar 

  42. Graham RI, Wilson K (2012) Male-killing Wolbachia and mitochondrial selective sweep in a migratory African insect. BMC Evol Biol 12:204

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nguyen DT, Morrow JL, Spooner-Hart RN, Riegler M (2017) Independent cytoplasmic incompatibility induced by Cardinium and Wolbachia maintains endosymbiont coinfections in haplodiploid thrips populations. Evolution 71:995–1008

    Article  CAS  PubMed  Google Scholar 

  44. Frank SA (1998) Dynamics of cytoplasmic incompatibility with multiple Wolbachia infections. J Theor Biol 192:213–218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Y. Sato and C. Ishijima (National Agriculture and Food Research Organization, Shimada, Japan) for invaluable help in the field. We also thank Dr. H. Anbutsu (National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan) for kind advice on our research. We also thank four anonymous reviewers for valuable suggestions.

Funding

This work was partially supported by the JSPS KAKENHI grant number JP24580076 and JSPS Research Fellowships for Young Scientists number 19J13123.

Author information

Authors and Affiliations

Authors

Contributions

TT conducted characterization of host lines and conducted field surveys. HA conducted field surveys, data analyses, and preparation for the manuscript. TT and HA contributed equally to the present work. NA established the host lines and conducted field surveys. MN supported entire experiments and contributed to discussion. YK supported the works, arranged surveys, and contributed to entire discussions of this study. MNI managed experiments and preparations for the manuscript and contributed to discussions of this study. Corresponding authors HA and MNI have full access to all data and had responsibility for the decision to submit for publication.

Corresponding authors

Correspondence to Hiroshi Arai or Maki N. Inoue.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Electronic Supplementary Material

ESM 1

(DOCX 420 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takamatsu, T., Arai, H., Abe, N. et al. Coexistence of Two Male-Killers and Their Impact on the Development of Oriental Tea Tortrix Homona magnanima. Microb Ecol 81, 193–202 (2021). https://doi.org/10.1007/s00248-020-01566-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01566-x

Keywords

Navigation