Skip to main content

Advertisement

Log in

Seasonal Patterns Contribute More Towards Phyllosphere Bacterial Community Structure than Short-Term Perturbations

  • Plant Microbe Interactions
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

Phyllosphere microorganisms are sensitive to fluctuations in wind, temperature, solar radiation, and rain. However, recent explorations of patterns in phyllosphere communities across time often focus on seasonal shifts and leaf senescence without measuring the contribution of environmental drivers and leaf traits. Here, we focus on the effects of rain on the phyllosphere bacterial community of the wetland macrophyte broadleaf cattail (Typha latifolia) across an entire year, specifically targeting days before and 1, 3, and 5 days after rain events. To isolate the contribution of precipitation from other factors, we covered a subset of plants to shield them from rainfall. We used targeted Illumina sequencing of the V4 region of the bacterial 16S rRNA gene to characterize phyllosphere community composition. Rain events did not have a detectable effect on phyllosphere community richness or evenness regardless of whether the leaves were covered from rain or not, suggesting that foliar microbial communities are robust to such disturbances. While climatic and leaf-based variables effectively modeled seasonal trends in phyllosphere diversity and composition, they provided more limited explanatory value at shorter time scales. These findings underscore the dominance of long-term seasonal patterns related to climatic variation as the main factor influencing the phyllosphere community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Stone BWG, Weingarten EW, Jackson CR (2018) The role of the phyllosphere microbiome in plant health and function. Annu Plant Rev Online 1:1–24. https://doi.org/10.1002/9781119312994.apr0614

    Article  Google Scholar 

  2. Balint-Kurti P, Simmons SJ, Blum JE, Ballaré CL, Stapleton AE (2010) Maize leaf epiphytic bacteria diversity patterns are genetically correlated with resistance to fungal pathogen infection. Mol Plant-Microbe Interact 23:473–484. https://doi.org/10.1094/MPMI-23-4-0473

    Article  CAS  PubMed  Google Scholar 

  3. Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77:3202–3210. https://doi.org/10.1128/AEM.00133-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fernando WGD, Nakkeeran S, Zhang Y, Savchuk S (2007) Biological control of Sclerotinia sclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Prot 26:100–107. https://doi.org/10.1016/j.cropro.2006.04.007

    Article  Google Scholar 

  5. Stout JD (1960) Bacteria of soil and pasture leaves at Claudelands Showgrounds. New Zeal J Agric Res 3:413–430. https://doi.org/10.1080/00288233.1960.10426626

    Article  Google Scholar 

  6. Sundin GW (2002) Ultraviolet radiation on leaves: its influence on microbial communities and their adaptations. In: Lindow SE, Hecht-Poinar EJ, Elliot V (eds) Phyllosphere microbiology. APS Press, St Paul, pp 27–38

    Google Scholar 

  7. Ophir T, Gutnick DL (1994) A role for polysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60:740–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wilson M, Lindow SE (1994) Inoculum density-dependent mortality and colonization of the phyllosphere by Pseudomonas syringae. Appl Environ Microbiol 60:2232–2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Morris CE, Barnes MB, McLean RJC (2002) Biofilms on leaf surfaces: implications for the biology, ecology and management of populations of epiphytic bacteria. In: Lindow SE, Hecht-Poinar EJ, Elliot V (eds) Phyllosphere microbiology. APS Press, St Paul, pp 317–339

    Google Scholar 

  10. Kinkel LL (1997) Microbial population dynamics on leaves. Annu Rev Phytopathol 35:327–347. https://doi.org/10.1146/annurev.phyto.35.1.327

    Article  CAS  PubMed  Google Scholar 

  11. Baldotto LEB, Olivares FL (2008) Phylloepiphytic interaction between bacteria and different plant species in a tropical agricultural system. Can J Microbiol 54:918–931. https://doi.org/10.1139/W08-087

    Article  CAS  PubMed  Google Scholar 

  12. Lindemann J, Constantinidou HA, Barchet WR, Upper CD (1982) Plants as sources of airborne bacteria, including ice nucleation-active bacteria. Appl Environ Microbiol 44:1059–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lindemann J, Upper CD (1985) Aerial dispersal of epiphytic bacteria over bean plants. Appl Environ Microbiol 50:1229–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Maignien L, DeForce EA, Chafee ME et al (2014) Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. MBio 5:1–10. https://doi.org/10.1128/mBio.00682-13

    Article  CAS  Google Scholar 

  15. Morris CE, Sands DC, Vinatzer BA, Glaux C, Guilbaud C, Buffière A, Yan S, Dominguez H, Thompson BM (2008) The life history of the plant pathogen Pseudomonas syringae is linked to the water cycle. ISME J 2:321–334. https://doi.org/10.1038/ismej.2007.113

    Article  CAS  PubMed  Google Scholar 

  16. Bowers RM, McLetchie S, Knight R, Fierer N (2011) Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME J 5:601–612. https://doi.org/10.1038/ismej.2010.167

    Article  CAS  PubMed  Google Scholar 

  17. Šantl-Temkiv T, Finster K, Dittmar T, Hansen BM, Thyrhaug R, Nielsen NW, Karlson UG (2013) Hailstones: a window into the microbial and chemical inventory of a storm cloud. PLoS One 8:e53550. https://doi.org/10.1371/journal.pone.0053550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Constantinidou HA, Hirano SS, Baker LS, Upper CD (1990) Atmospheric dispersal of ice nucleation-active bacteria: the role of rain. Phytopathology 80:934–937

    Article  Google Scholar 

  19. Cevallos-Cevallos JM, Danyluk MD, Gu G et al (2012) Dispersal of Salmonella Typhimurium by rain splash onto tomato plants. J Food Prot 75:472–479. https://doi.org/10.4315/0362-028X.JFP-11-399

    Article  PubMed  Google Scholar 

  20. Hirano SS, Baker LS, Upper CD (1996) Raindrop momentum triggers growth of leaf-associated populations of Pseudomonas syringae on field-grown snap bean plants. Appl Environ Microbiol 62:2560–2566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duveiller E (1994) A study of Xanthomonas campestris pv. undulosa populations associated with symptomless wheat leaves. Parasitica 50:109–117

    Google Scholar 

  22. Jacobs JL, Carroll TL, Sundin GW (2005) The role of pigmentation, ultraviolet radiation tolerance and leaf colonization strategies in the epiphytic survival of phyllosphere bacteria. Microb Ecol 49:104–113. https://doi.org/10.1007/s00248-006-9175-0

    Article  CAS  PubMed  Google Scholar 

  23. Thompson IP, Bailey MJ, Fenlon JS, Fermor TR, Lilley AK, Lynch JM, McCormack PJ, McQuilken MP, Purdy KJ, Rainey PB, Whipps JM (1993) Quantitative and qualitative seasonal changes in the microbial community from the phyllosphere of sugar-beet (Beta vulgaris). Plant Soil 150:177–191

    Article  Google Scholar 

  24. Woody ST, Ives AR, Nordheim EV, Andrews JH (2007) Dispersal, density dependence, and population dynamics of a fungal microbe on leaf surfaces. Ecology 88:1513–1524. https://doi.org/10.1890/05-2026

    Article  PubMed  Google Scholar 

  25. Pedgley DE (1991) Aerobiology: the atmosphere as a source and sink for microbes. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 43–59

    Chapter  Google Scholar 

  26. Stone BWG, Jackson CR (2019) Canopy position is a stronger determinant of bacterial community composition and diversity than environmental disturbance in the phyllosphere. FEMS Microbiol Ecol 95:1–11. https://doi.org/10.1093/femsec/fiz032

    Article  CAS  Google Scholar 

  27. Green J, Bohannan BJM (2006) Spatial scaling of microbial biodiversity. Trends Ecol Evol 21:501–507. https://doi.org/10.1016/j.tree.2006.06.012

    Article  PubMed  Google Scholar 

  28. Voriskova J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486. https://doi.org/10.1038/ismej.2012.116

    Article  CAS  PubMed  Google Scholar 

  29. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. https://doi.org/10.1128/AEM.01043-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rasband W (1997) ImageJ

  31. Urbanek S (2019) Jpeg: read and write JPEG images

  32. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. https://doi.org/10.1128/AEM.01541-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schloss PD, Gevers D, Westcott SL (2011) Reducing the effects of PCR amplification and sequencing artifacts on 16s rRNA-based studies. PLoS One 6. https://doi.org/10.1371/journal.pone.0027310

  34. Jackson C, Stone B, Tyler H (2015) Emerging perspectives on the natural microbiome of fresh produce vegetables. Agriculture 5:170–187. https://doi.org/10.3390/agriculture5020170

    Article  Google Scholar 

  35. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glockner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. https://doi.org/10.1093/nar/gkm864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McMurdie PJ, Holmes S (2014) Waste not want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol 10:e1003531. https://doi.org/10.1371/journal.pcbi.1003531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Team RC (2018) R: a language and environment for statistical computing

  38. Breiman L (2017) Classification and regression trees. Routledge, Abingdon

    Book  Google Scholar 

  39. Breiman L (2001) Random forests. Mach Learn 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  40. Liaw A, Wiener M (2002) Classification and regression by randomForest. R News 2:18–22

    Google Scholar 

  41. Kuhn M, Wing J, Westion S, et al (2017) Caret: classification and regression training

  42. Oksanen J, Blanchet F, Kindt R, et al (2018) Vegan: community ecology package

  43. Podani J, Schmera D (2011) A new conceptual and methodological framework for exploring and explaining pattern in presence - absence data. Oikos 120:1625–1638. https://doi.org/10.1111/j.1600-0706.2011.19451.x

    Article  Google Scholar 

  44. Dray S, Blanchet G, Borcard D, et al (2017) adespatial: multivariate multiscale spatial analysis

  45. Redford AJ, Fierer N (2009) Bacterial succession on the leaf surface: a novel system for studying successional dynamics. Microb Ecol 58:189–198. https://doi.org/10.1007/s00248-009-9495-y

    Article  PubMed  Google Scholar 

  46. Jackson CR, Denney W (2011) Annual and seasonal variation in the phyllosphere bacterial community associated with leaves of the southern Magnolia (Magnolia grandiflora). Microb Ecol 61:113–122

    Article  PubMed  Google Scholar 

  47. Williams TR, Moyne AL, Harris LJ, Marco ML (2013) Season, irrigation, leaf age, and Escherichia coli inoculation influence the bacterial diversity in the lettuce Phyllosphere. PLoS One 8:1–14. https://doi.org/10.1371/journal.pone.0068642

    Article  CAS  Google Scholar 

  48. Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS (2015) Seasonal community succession of the phyllosphere microbiome. Mol Plant-Microbe Interact 28:274–285. https://doi.org/10.1094/MPMI-10-14-0331-FI

    Article  CAS  PubMed  Google Scholar 

  49. Last FT (1955) Seasonal incidence of Sporobolomyces on cereal leaves. Trans Br Mycol Soc 38:221–239. https://doi.org/10.1016/S0007-1536(55)80069-1

    Article  Google Scholar 

  50. Kuehn KA, Ohsowski BM, Francoeur SN, Neelyb RK (2011) Contributions of fungi to carbon flow and nutrient cycling from standing dead Typha angustifolia leaf litter in a temperate freshwater marsh. Limnol Oceanogr 56:529–539. https://doi.org/10.4319/lo.2011.56.2.0529

    Article  CAS  Google Scholar 

  51. Su R, Kuehn KA, Phipps SW (2015) Fungal contributions to carbon flow and nutrient cycling during decomposition of standing Typha domingensis leaves in a subtropical freshwater marsh. Freshw Biol 60:2100–2112. https://doi.org/10.1111/fwb.12635

    Article  CAS  Google Scholar 

  52. Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE (2016) The phyllosphere: microbial jungle at the plant–climate interface. Annu Rev Ecol Evol Syst 47:1–24. https://doi.org/10.1146/annurev-ecolsys-121415-032238

    Article  Google Scholar 

  53. Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci 106:16428–16433. https://doi.org/10.1073/pnas.0905240106

    Article  PubMed  PubMed Central  Google Scholar 

  54. Atamna-Ismaeel N, Finkel O, Glaser F, von Mering C, Vorholt JA, Koblížek M, Belkin S, Béjà O (2012) Bacterial anoxygenic photosynthesis on plant leaf surfaces. Environ Microbiol Rep 4:209–216. https://doi.org/10.1111/j.1758-2229.2011.00323.x

    Article  CAS  PubMed  Google Scholar 

  55. Buczolits S, Busse H-J (2011) Hymenobacter. In: Krieg NR, Ludwig W, Whitman W et al (eds) Bergey’s manual of systematic bacteriology, vol 4. 2nd edn. Springer, New York, pp 397–404

    Google Scholar 

  56. Buczolits S, Denner EBM, Vybiral D, Wieser M, Kämpfer P, Busse HJ (2002) Classification of three airborne bacteria and proposal of Hymenobacter aerophilus sp. nov. Int J Syst Evol Microbiol 52:445–446. https://doi.org/10.1099/00207713-52-2-445

    Article  CAS  PubMed  Google Scholar 

  57. Buczolits S, Denner EBM, Kämpfer P, Busse HJ (2006) Proposal of Hymenobacter norwichensis sp. nov., classification of “Taxeobacter ocellatus”, “Taxeobacter gelupurpurascens” and “Taxeobacter chitinovorans” as Hymenobacter ocellatus sp. nov., Hymenobacter gelipurpurascens sp. nov. and Hymenobacter chitinivo. Int J Syst Evol Microbiol 56:2071–2078. https://doi.org/10.1099/ijs.0.64371-0

    Article  CAS  PubMed  Google Scholar 

  58. Antibus DE, Leff LG, Hall BL, Baeseman JL, Blackwood CB (2012) Cultivable bacteria from ancient algal mats from the McMurdo dry valleys, Antarctica. Extremophiles 16:105–114. https://doi.org/10.1007/s00792-011-0410-3

    Article  CAS  PubMed  Google Scholar 

  59. Venkata Ramana V, Sasikala C, Takaichi S, Ramana CV (2010) Roseomonas aestuarii sp. nov., a bacteriochlorophyll-a containing alphaproteobacterium isolated from an estuarine habitat of India. Syst Appl Microbiol 33:198–203. https://doi.org/10.1016/j.syapm.2009.09.004

    Article  CAS  PubMed  Google Scholar 

  60. Zhang YQ, Yu LY, Wang D, Liu HY, Sun CH, Jiang W, Zhang YQ, Li WJ (2008) Roseomonas vinacea sp. nov., a gram-negative coccobacillus isolated from a soil sample. Int J Syst Evol Microbiol 58:2070–2074. https://doi.org/10.1099/ijs.0.65789-0

    Article  CAS  PubMed  Google Scholar 

  61. Gallego V, Sánchez-Porro C, García MT, Ventosa A (2006) Roseomonas aquatica sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 56:2291–2295. https://doi.org/10.1099/ijs.0.64379-0

    Article  CAS  PubMed  Google Scholar 

  62. Jiang CY, Dai X, Wang BJ et al (2006) Roseomonas lacus sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 56:25–28. https://doi.org/10.1099/ijs.0.63938-0

    Article  CAS  PubMed  Google Scholar 

  63. Finster KW, Herbert RA, Lomstein BA (2009) Spirosoma spitsbergense sp. nov. and Spirosoma luteum sp. nov., isolated from a high Arctic permafrost soil, and emended description of the genus Spirosoma. Int J Syst Evol Microbiol 59:839–844. https://doi.org/10.1099/ijs.0.002725-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge Kristin Warner and Jessie Smith for their help in the collection and laboratory work associated with this project.

Sequence Data

The sequence data reported are available in the SRA database under the project accession number PRJNA487794.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bram W. G. Stone.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Significance

This research considers the importance of both short-term environmental variation and seasonal patterns in phyllosphere bacterial assembly more directly than in previous work. Recent next-generation sequencing studies of the phyllosphere microbial community across seasonal boundaries have shown clear shifts in composition and diversity following leaf senescence. However, these studies have not effectively investigated how factors such as rain, wind, solar radiation, and temperature interact with leaf senescence in driving community composition changes. This work advances the field by shedding light into these causative factors as they affect the foliar plant microbiome. Understanding the development of bacterial epiphyte communities in response to these drivers forms a significant and original contribution to our understanding of microbial dynamics in the plant phyllosphere. In addition, we apply a machine learning regression model to determine the importance of multiple correlated climatic variables.

Electronic supplementary material

ESM 1

(PDF 455 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stone, B.W.G., Jackson, C.R. Seasonal Patterns Contribute More Towards Phyllosphere Bacterial Community Structure than Short-Term Perturbations. Microb Ecol 81, 146–156 (2021). https://doi.org/10.1007/s00248-020-01564-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-020-01564-z

Keywords

Navigation