Skip to main content

Advertisement

Log in

Time-series analysis of the evolution of large-scale loess landslides using InSAR and UAV photogrammetry techniques: a case study in Hongheyan, Gansu Province, Northwest China

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

Loess landslides are a severe engineering geological problem on the Loess Plateau of China. This study relies on interferometric synthetic aperture radar (InSAR) and unmanned aerial vehicle (UAV) photogrammetry techniques to characterise a large-scale loess landslide deformation process in Northwest China. First, a total of 85 Sentinel-1 SAR images acquired from March 2015 to March 2019 were used to detect the spatial displacement and characterise the pattern of deformation from presliding to postsliding. Second, three UAV flight surveys were conducted to reconstruct landslide morphology, identify scarps, cracks and fissures; and generate elevation differences. By comparing these two technologies, we found that InSAR has more advantages in the retrieval of creeping deformation, while UAV data is valuable for detecting large sudden slides. Dynamic deformation zonation maps were generated based on comprehensive analysis, and the deformation pattern of the large loess landslide was deduced. The Hongheyan landslide was induced by heavy rainfall and then gradually became suspended owing to the topography effect. Recently, the western part of the slope showed a clear accelerating trend. This evolution provides comprehensive kinematic information for local governments to make further intensive observations or take effective precautions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

CHK:

Checked points

DGNSS:

Differential Global Navigation Satellite System

DSMs:

Digital surface models

DS:

Distributed scatters

ESA:

European Space Agency

EDA:

Extreme deformation area

FIP:

First investigation period

GPS:

Global Positioning System

GCPs:

Ground control points

GF-2:

Gaofen-2

HCP:

High coherence points

HP:

Homogeneous pixels

InSAR:

Interferometric synthetic aperture radar

LOS:

Line of sight

LDA:

Low deformation area

MVS:

Multi-view stereo

MCF:

Minimum cost flow

MT-InSAR:

Multi-temporal InSAR

POD:

Precise orbit ephemerides

PS:

Persistent scatter

PSC:

Persistent scatter candidate

RMSE:

Root mean squared error

SRTM:

Shuttle Radar Topography Mission

SFM:

Structure from Motion

SIP:

Second investigation period

SDA:

Strong deformation area

SA:

Stable area

TOPS:

Terrain observation with progressive scans

TIP:

Third investigation period

UAV:

Unmanned aerial vehicle

References

  • An Z, Kutzbach JE, Prell WL, Porter SC (2001) Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411:62–66

    Google Scholar 

  • Bayer B, Simoni A, Schmidt D, Bertello L (2017) Using advanced InSAR techniques to monitor landslide deformations induced by tunneling in the Northern Apennines, Italy. Eng Geol 226:20–32. https://doi.org/10.1016/j.enggeo.2017.03.026

  • Bayer B, Simoni A, Mulas M, Corsini A, Schmidt D (2018) Deformation responses of slow moving landslides to seasonal rainfall in the northern Apennines, measured by InSAR. Geomorphology 308:293–306. https://doi.org/10.1016/j.geomorph.2018.02.020

    Article  Google Scholar 

  • Berardino P, Fornaro G, Lanari R, Manunta M (2003) A two-scale differential SAR interferometry approach for investigating earth surface deformations. Geosci Remote Sens Symp 2003(2):1184–1186

    Google Scholar 

  • Bonzanigo L, Eberhardt E, Loew S (2007) Long-term investigation of a deep-seated creeping landslide in crystalline rock. Geological and hydromechanical factors controlling the Campo Vallemaggia landslide. Can Geotech J 44:1157–1180

    Article  Google Scholar 

  • Crosetto M, Monserrat O, Cuevas-Gonzalez M, Devanthery N, Crippa B (2016) Persistent scatterer interferometry: a review. ISPRS J Photogram Remote Sens 115:78–89

    Article  Google Scholar 

  • Cruden DM, Varnes DJ (1996) Landslides: investigation and mitigation. Chapter 3-landslide types and processes. Transportation research board special report, Washington DC, pp 247. http://onlinepubs.trb.org/Onlinepubs/sr/sr247/sr247-003.pdf

  • Derbyshire E (2001) Geological hazards in loess terrain, with particular reference to the loess regions of China. Earth-Sci Rev 54(1):231–260. https://doi.org/10.1016/S0012-8252(01)00050-2

    Article  Google Scholar 

  • Dijkstra TA (2000) Loess slope instability in the Lanzhou region, China.Koninklijk Nederlands Aardrijkskundig, Netherlands

  • Dong J, Liao M, Xu Q, Zhang L, Tang M, Gong J (2018) Detection and displacement characterization of landslides using multi-temporal satellite SAR interferometry: a case study of Danba County in the Dadu River Basin. Eng Geol 240:95–109

    Article  Google Scholar 

  • Fernández T, Pérez JL, Cardenal FJ, López A, Gómez JM, Colomo C, Sánchez M, Delgado J (2015) Use of a light UAV and photogrammetric techniques to study the evolution of a landslide. Int Arch Photogramm Remote Sens Spat Inf Sci XL-3-W3:241–248

    Article  Google Scholar 

  • Fernández T, Pérez J, Cardenal J, Gómez J, Colomo C, Delgado J (2016) Analysis of landslide evolution affecting olive groves using UAV and photogrammetric techniques. Remote Sens 8(10):837. https://doi.org/10.3390/rs8100837

    Article  Google Scholar 

  • Geological Environmental Monitoring Institute of Gansu (2011) A feasibility study report of landslide management projects in Heifangtai, Yongjing. (in Chinese)

  • González-Díez A, Fernández-Maroto G, Doughty MW, Díaz de Terán JR, Bruschi V, Cardenal J, Pérez JL, Mata E, Delgado J (2014) Development of a methodological approach for the accurate measurement of slope changes due to landslides, using digital photogrammetry. Landslides 11:615–628

    Article  Google Scholar 

  • Hervás J, Barredo J, Rosin P, Pasuto A, Mantovani F, Silvano S (2003) Monitoring landslides from optical remotely sensed imagery: the case history of Tessina landslide, Italy. Geomorphology 54(1–2):63–75. https://doi.org/10.1016/S0169-555X(03)00056-4

  • Hu S, Qiu H, Wang X, Gao Y, Wang N, Wu J, Cao M (2018) Acquiring high-resolution topography and performing spatial analysis of loess landslides by using low-cost UAVs. Landslides 15(3):593–612. https://doi.org/10.1007/s10346-017-0922-8

    Article  Google Scholar 

  • Jiang S, Wen BP, Zhao C, Li RD, Li ZH (2016) Kinematics of a giant slow-moving landslide in Northwest China: constraints from high resolution remote sensing imagery and GPS monitoring. J Asian Earth Sci 123:34–46. https://doi.org/10.1016/j.jseaes.2016.03.019

    Article  Google Scholar 

  • Keller EA, DeVecchio DE (2012) Natural hazards—earth’s processes as hazards, disasters, and catastrophes, 3rd edn. Pearson Edu- cation, Inc, New Jersey. https://doi.org/10.1017/CBO9781107415324.004

    Book  Google Scholar 

  • Li YR, Mo P (2019) A unified landslide classification system for loess slopes: a critical review. Geomorphology 340:67–83. https://doi.org/10.1016/j.geomorph.2019.04.020

  • Lindner G, Schraml K, Mansberger R, Hübl J (2016) UAV monitoring and documentation of a large landslide. Appl Geomat 8(1):1–11. https://doi.org/10.1007/s12518-015-0165-0

    Article  Google Scholar 

  • Liu X, Zhao C, Zhang Q, Peng J, Zhu W, Lu Z (2018) Multi-temporal loess landslide inventory mapping with C-, X- and L-band SAR datasets—a case study of Heifangtai Loess Landslides, China. Remote Sens 10(11):1756. https://doi.org/10.3390/rs10111756

    Article  Google Scholar 

  • Lu P, Bai S, Tofani V, Casagli N (2019) Landslides detection through optimized hot spot analysis on persistent scatterers and distributed scatterers. ISPRS J Photogramm Remote Sens 156:147–159. https://doi.org/10.1016/j.isprsjprs.2019.08.004

  • Lucieer A, de Jong SM, Turner D (2013) Mapping landslide displacements using structure from motion (SfM) and image correlation of multi-temporal UAV photography. Prog Phys Geogr 38(1):97–116. https://doi.org/10.1177/0309133313515293

    Article  Google Scholar 

  • Lucieer A, Turner D, King DH, Robinson SA (2014) Using an unmanned aerial vehicle (UAV) to capture micro-topography of antarctic moss beds. Int J Appl Earth Obs 27:53–62

    Article  Google Scholar 

  • Lukić T, Bjelajac D, Fitzsimmons KE, Marković SB, Basarin B, Mlađan D, Samardžić I (2018) Factors triggering landslide occurrence on the Zemun loess plateau, Belgrade area, Serbia. Environ Earth Sci 77(13):519. https://doi.org/10.1007/s12665-018-7712-z

  • Martha TR, Kerle N, Jetten V, van Westen CJ, Kumar KV (2010) Characterising spectral, spatial and morphometric properties of landslides for semi-automatic detection using object-oriented methods. Geomorphology 116:24–36

    Article  Google Scholar 

  • Massey C, Petley D, McSaveney M (2013) Patterns of movement in reactivated landslides. Eng Geol 159:1–19

    Article  Google Scholar 

  • Mateos RM, Azañón JM, Roldán FJ, Notti D, Pérez-Peña V, Galve JP, Pérez-García JL, Colomo CM, Gómez-López JM, Montserrat O, Devantèry N, Lamas-Fernández F, Fernández-Chacón F (2017) The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain). Landslides 14(2):743–754. https://doi.org/10.1007/s10346-016-0723-5

    Article  Google Scholar 

  • Meng Q, Xu Q, Wang B, Li W, Peng Y, Peng D, Qi X, Zhou D (2019) Monitoring the regional deformation of loess landslides on the Heifangtai terrace using the Sentinel 1 time series interferometry technique. Nat Hazards 0123456789:485–505. https://doi.org/10.1007/s11069-019-03703-3

    Article  Google Scholar 

  • Morelli S, Tanteri L, Raspini F, Tofani V, Frodella W, Rossi G, Ciampalini A (2017) Spaceborne, UAV and ground-based remote sensing techniques for landslide mapping, monitoring and early warning. Geoenviron Dis 4(1):1–23. https://doi.org/10.1186/s40677-017-0073-1

    Article  Google Scholar 

  • Muhs DR (2007) Loess deposits. Origins and Properties, Encyclopedia of Quaternary Science

    Google Scholar 

  • Peng D, Xu Q, Liu F, He Y, Zhang S, Qi X, Zhao K, Zhang X (2017) Distribution and failure modes of the landslides in Heitai terrace, China. Eng Geol 236:97–110. https://doi.org/10.1016/j.enggeo.2017.09.016

    Article  Google Scholar 

  • Peng J, Zhuang J, Wang G, Dai F, Zhang F, Huang W, Xu Q (2018) Liquefaction of loess landslides as a consequence of irrigation. Q J Eng Geol Hydrogeol 51(3):330–337. https://doi.org/10.1144/qjegh2017-098

    Article  Google Scholar 

  • Picarelli L (2010) Discussion on “a rapid loess flow slide triggered by irrigation in China” by D. Zhang, G. Wang, C.Luo, J.Chen, and Y.Zhou. Landslides 7:203–205

    Article  Google Scholar 

  • Qi X, Xu Q, Liu FZ (2018) Analysis of retrogressive loess flowslides in Heifangtai, China. Eng Geol 236:119–128. https://doi.org/10.1016/j.enggeo.2017.08.028

    Article  Google Scholar 

  • Raspini F, Bardi F, Bianchini S, Ciampalini A, Del Ventisette C, Farina P et al (2017) The contribution of satellite SAR-derived displacement measurements in landslide risk management practices. Nat Hazards 86(1):327–351

    Article  Google Scholar 

  • Raspini F, Bianchini S, Ciampalini A, del Soldato M, Solari L, Novali F, del Conte S, Rucci A, Ferretti A, Casagli N (2018) Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci Rep 8:7253. https://doi.org/10.1038/s41598-018-25369-w

    Article  Google Scholar 

  • Rossi G, Tanteri L, Tofani V, Vannocci P, Moretti S, Casagli N (2018) Multitemporal UAV surveys for landslide mapping and characterization. Landslides 15(5):1045–1052

    Article  Google Scholar 

  • Royán MJ, Abellán A, Jaboyedoff M, Vilaplana JM, Calvet J (2014) Spatio-temporal analysis of rockfall pre-failure deformation using Terrestrial LiDAR. Landslides 11(4):697–709

    Article  Google Scholar 

  • Shi X, Yang C, Zhang L, Jiang H, Liao M, Zhang L, Liu X (2019) Mapping and characterizing displacements of active loess slopes along the upstream Yellow River with multi-temporal InSAR datasets. Sci Total Environ 674:200–210

    Article  Google Scholar 

  • Sun W (2017) Loess landslide inventory map based on GF-1 satellite imagery (July 2013):1–17. https://doi.org/10.3390/rs9040314

  • Turner D, Lucieer A, De Jong S (2015) Time series analysis of landslide dynamics using an unmanned aerial vehicle (UAV). Remote Sens 7(2):1736–1757. https://doi.org/10.3390/rs70201736

    Article  Google Scholar 

  • Wiemer G, Moernaut J, Stark N, Kempf P, de Batist M, Pino M, Urrutia R, de Guevara BL, Strasser M, Kopf A (2015) The role of sediment composition and behavior under dynamic loading conditions on slope failure initiation: a study of a subaqueous landslide in earthquake-prone South-Central Chile. Int J Earth Sci 104(5):1439–1457

    Article  Google Scholar 

  • Xin P, Liang C, Wu S, Liu Z, Shi JS, Wang T (2016) Kinematic characteristics and dynamic mechanisms of large-scale landslides in a loess plateau: a case study for the north bank of the Baoji stream segment of the Wei River, China. Bull Eng Geol Environ 75(2):659–671

    Article  Google Scholar 

  • Yang D, Qiu H, Pei Y, Hu S, Ma S, Liu Z, Zhang Y, Cao M (2020) Spatial and temporal evolution of the infiltration characteristics of a loess landslide. ISPRS Int J Geo Inf 9(1):26

    Article  Google Scholar 

  • Yuan XQ, Duan Z, Zhao FS (2018) The formation mechanism of river erosion-induced loess landslide. IOP Conf Ser Earth Environ Sci 186(3). https://doi.org/10.1088/1755-1315/186/3/012045

  • Zárate MA (2007) South America. In: Elias S (ed) The Encyclopedia of Quaternary Sciences, vol 541. Elsevier, Amsterdam, pp 1466–1479. https://doi.org/10.1016/j.jhydrol.2016.07.033

    Chapter  Google Scholar 

  • Zhang ZH (2000) Nine greet bends with miles of sands in Yellow River – the Yellow River and the Loess Plateau. Tsinghua University Press and Jinan University Press, Beijing (in Chinese)

    Google Scholar 

  • Zhang F, Chen W, Liu G, Liang S, Kang C, He F (2012) Relationships between landslide types and topographic attributes in a loess catchment, China. J Mt Sci 9(6):742–751. https://doi.org/10.1007/s11629-012-2377-7

    Article  Google Scholar 

  • Zhao C, Zhang Q, He Y, Peng J, Yang C, Kang Y (2016) (2016) Small-scale loess landslide monitoring with small baseline subsets interferometric synthetic aperture radar technique—case study of Xingyuan landslide, Shaanxi. 10:10(2). https://doi.org/10.1117/1.JRS.10.026030

  • Zhuang JQ, Peng JB (2014) A coupled slope cutting-a prolonged rainfall-induced loess landslide: a 17 October 2011 case study. Bull Eng Geol Environ 73:997–1011. https://doi.org/10.1007/s10064-014-0645-1

    Article  Google Scholar 

  • Zhuang J, Peng J, Wang G, Javed I, Wang Y, Li W (2018) distribution and characteristics of landslide in loess plateau: a case study in Shaanxi province. Eng Geol 236(September 1983):89–96. https://doi.org/10.1016/j.enggeo.2017.03.001

    Article  Google Scholar 

Download references

Acknowledgements

We thank for the contribution of Qiongpei Cairen, Xianjie, Yin, Weiming Jiang, Yuanshuai Shi, Fan Yang, Cong Dai and Qinggang Li for supporting in field investigation, Doctor Fanyu Zhang of Lanzhou University for providing local topography and geology map and anonymous reviewers for their careful work in improving the quality of the paper.

Funding

This research was supported by National Natural Science Foundation of China (41807290), the Open foundation of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology (SKLGP2017K019), the Natural Science Foundation of Qinghai Province (2017-ZJ-926Q), the Key Research Project of Qinghai Province (2019-0101-ZJC-0001, 2019-ZJ-A10) and the China Scholarship Council (CSC201808635039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weile Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Q., Li, W., Raspini, F. et al. Time-series analysis of the evolution of large-scale loess landslides using InSAR and UAV photogrammetry techniques: a case study in Hongheyan, Gansu Province, Northwest China. Landslides 18, 251–265 (2021). https://doi.org/10.1007/s10346-020-01490-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-020-01490-8

Keywords

Navigation