Skip to main content
Log in

Adsorption and separation of Re(VII) using trimethylamine-functionalized strong base anion exchange resin

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

A new strong base anion exchange resin (LSL-1) was synthesized by grafting trimethylamine groups onto polystyrene-divinylbenzene microspheres and used for the selective recovery of Re(VII) from U(VI)-containing effluent. The morphology and structural properties of LSL-1 were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The adsorption mechanism is discussed. In both batch and column experiments, LSL-1 showed excellent enrichment capacity for Re(VII). This study demonstrates a new approach for the separation and recovery of Re(VII) from U(VI)-containing effluent by using amino-modified polystyrene-divinylbenzene microspheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 2

Similar content being viewed by others

References

  1. Hong T, Liu MB, Ma J, Yang G, Li LB, Kathryn AM, Geoffrey WS (2019) Selective recovery of Rhenium from industrial leach solutions by synergistic solvent extraction. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2019.116281

    Article  Google Scholar 

  2. Fathi MB, Rezai B, Alamdari EK, Alorro RD (2017) Mechanism and equilibrium modeling of Re and Mo adsorption on a gel type strong base anion resin. Russ J Appl Chem 90(9):1504–1513

    Article  CAS  Google Scholar 

  3. Xiong Y, Xu J, Shan WJ, Lou ZN, Fang DW, Zang SL, Han GX (2013) A new approach for rhenium(VII) recovery by using modified brown algae Laminaria japonica adsorbent. Bioresour Technol 127:464–472

    Article  CAS  Google Scholar 

  4. Lou ZN, Wan L, Guo CF, Zhang SQ, Shan WJ, Xiong Y (2015) Quasi-complete separation Re(VII) from Mo (VI) onto magnetic modified cross-linked Chitosan crab shells gel by using kinetics methods. Ind Eng Chem Res 54:1333–1341

    Article  CAS  Google Scholar 

  5. Dai S, Lee B, Im HJ, Luo HM, Hagaman EW (2005) Synthesis and characterization of periodic mesoporous organosilicas as anion exchange resins for perrhenate adsorption. Langmuir 21:5372–5376

    Article  Google Scholar 

  6. Petrov DG, Troshkina ID, Chekmarev AM, Maiboroda AB (2001) Precipitation recovery of rhenium(VII) from aqueous solutions with coagulating cationic polyelectrolyte. Russ J Appl Chem 74:954–957

    Article  CAS  Google Scholar 

  7. Troshkina ID, Naing KZ, Ushanova ON, P’o V, Abdusalomov AA (2006) Recovery of rhenium from sulfuric acid solutions with activated coals. Russ J Appl Chem 79:1419–1422

    Article  CAS  Google Scholar 

  8. Fang DW, Gu XJ, Xiong Y, Yue S, Li J, Zang SL (2010) Thermodynamics of solvent extraction of rhenium with trioctylamine. J Chem Eng Data 55:424–427

    Article  CAS  Google Scholar 

  9. Cheema HA, Ilya S, Masud S, Mushan MA, Mahnood I, Lee JC (2018) Selective recovery of rhenium from molybdenite flue-dust leach liquor using solvent extraction with TBP. Sep Purif Technol 191:116–121

    Article  CAS  Google Scholar 

  10. Lou ZN, Zhao ZY, Li YX, Shan WJ, Xiong Y, Fang DW, Yue S, Zang SL (2013) Contribution of tertiary amino groups to Re(VII) biosorption on modified corn stalk: competitiveness and regularity. Bioresour Technol 133:546–554

    Article  CAS  Google Scholar 

  11. José G, Lorena M, Ian A, Joaquin Y, Fernando V, Carlos B (2019) Recovery and separation of rhenium and molybdenum from aqueous solutions that simulate mine waters using magnetite nanoparticles functionalized with amine-derivative groups. Miner Eng 136:66–76

    Article  Google Scholar 

  12. Jia M, Cui HM, Jin WQ, Zhu LL, Liu Y, Chen J (2013) Adsorption and separation of rhenium(VII) using N-methylimidazolium functionalized strong basic anion exchange resin. J Chem Technol Biot 88(3):437–443

    Article  CAS  Google Scholar 

  13. Lan X, Liang S, Song Y (2006) Recovery of rhenium from molybdenite calcine by a resin-in-pulp process. Hydrometallurgy 82:133–136

    Article  CAS  Google Scholar 

  14. Fathi MB, Rezai B, Alamdari EK (2017) Competitive adsorption characteristics of rhenium in single and binary (Re–Mo) systems using Purolite A170. Int J Miner Process 169:1–6

    Article  CAS  Google Scholar 

  15. Zhang ZB, Dong ZM, Wang XX et al (2019) Synthesis of ultralight phosphorylated carbon aerogel for efficient removal of U(VI): Batch and fixed-bed column studies. Chem Eng J 370:1376–1387

    Article  CAS  Google Scholar 

  16. Zhang B, Liu HZ, Wang W, Gao ZG, Cao YH (2017) Recovery of rhenium from copper leach solutions using ion exchange with weak base resins. Hydrometallurgy 173:50–56

    Article  CAS  Google Scholar 

  17. Liu TY, Zhao L, Sun DS, Tan X (2010) Entrapment of nanoscale zero-valent iron in chitosan beads for hexavalent chromium from wastewater. J Hazard Mater 184:724–730

    Article  CAS  Google Scholar 

  18. Wu P, Wang Y, Hu XW, Yuan DZ, Liu Y, Liu ZR (2019) Synthesis of magnetic graphene oxide nanoribbons composite for the removal of Th(IV) from aqueous solutions. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-018-6375-2

    Article  Google Scholar 

  19. Feng YR, Ma BS, Guo X, Sun HB, Zhang YJ, Gong HY (2019) Preparation of amino-modified hydroxyapatite and its uranium adsorption properties. J Radioanal Nucl Chem 319:437–446

    Article  CAS  Google Scholar 

  20. Liu HZ, Zhang B, Jing XJ, Wang W, Wang LJ (2018) Adsorption and desorption properties for rhenium using a kind of weak-base anion resin. Rare Met 37(8):707–715

    Article  Google Scholar 

  21. Zu JH, Fu LX, Tang FD, He LF (2019) Synthesis and characterization of pyridyl anion exchange resin for 99Tc removal. J Radioanal Nucl Chem 321(1):235–242

    Article  CAS  Google Scholar 

  22. Cyganowski P, Polowczyk I, Morales DV, Urbano BF, Rivas BL, Bryjak M, Kabay N (2017) Synthetic strong base anion exchange resins: synthesis and sorption of Mo(VI) and V(V). Polym Bull 75(2):729–746

    Article  Google Scholar 

  23. Lou ZN, Li YX, Ren FQ, Zhang Q, Wan L, Xing ZQ, Zang SL, Xiong Y (2016) Selectivity recovery of molybdenum(VI) from rhenium(VII) by amine-modified persimmon waste. Rare Met 35(6):502–508

    Article  CAS  Google Scholar 

  24. Xu Z, Cai JG, Pan BC (2013) Mathematically modeling fixed-bed adsorption in aqueous systems. J Zhejiang Univ SC A 14(3):155–176

    Article  CAS  Google Scholar 

  25. Chen LF, Yin XB, Yu Q, Lu SM, Meng FY, Ning SY, Wang XP, Wei YZ (2019) Rapid and selective capture of perrhenate anion from simulated groundwater by a mesoporous silica-supported anion exchanger. Microporous MesoporMicropor Mesopor Mat Mater 274:155–162

    Article  CAS  Google Scholar 

  26. Li J, Chen CL, Zhang R, Wang X (2015) Reductive immobilization of Re(VII) by graphene modified nanoscale zero-valent iron particles using a plasma technique. Sci China Chem 59(1):150–158

    Article  CAS  Google Scholar 

  27. Li YH, Yang LJ, Liu XY, Li N, Zhang L, Li Q, Yang Y, Duan Y, Zhang FQ (2015) Highly enhanced selectivity for the separation of rhenium and molybdenum using amino-functionalized magnetic Cu-ferrites. J Mater Sci 50(18):5960–5969

    Article  CAS  Google Scholar 

  28. Guo XY, Ma ZC, Li D, Tian QH, Xu ZP (2019) Recovery of Re(VII) from aqueous solutions with coated impregnated resins containing ionic liquid Aliquat 336. Hydrometallurgy 190:105149

    Article  CAS  Google Scholar 

  29. Guo XY, Ma ZC, Li D, Yu DW (2019) Coated impregnated resin containing Alamine 336 for the selective adsorption of ReO4 from sulfuric acid solutions. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.111901

    Article  Google Scholar 

  30. Xiu TY, Liu ZR, Wang Y, Wu P, Du Y, Cai ZW (2019) Thorium adsorption on graphene oxide nanoribbons/manganese dioxide composite material. J Radioanal Nucl Chem. https://doi.org/10.1007/s10967-019-06417-9

    Article  Google Scholar 

  31. Marković BM, Vuković ZM, Spasojević VV, Kusigerski VB, Pavlović VB, Onjia AE, Nastasović AB (2017) Selective magnetic GMA based potential sorbents for molybdenum and rhenium sorption. J Alloys Compd 705:38–50

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (21761002), the Nuclear energy development project (technology for the mining and metallurgy of associated uranium resources—on the demonstration of uranium co-mining in Bayan Ura, Inner Mongolia) and the Jiangxi Provincal Key Laboratory of Mass Spectrometry Science and Instrument Development Fund (JSMS201607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Hua.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Hua, R., Zhang, F. et al. Adsorption and separation of Re(VII) using trimethylamine-functionalized strong base anion exchange resin. J Radioanal Nucl Chem 326, 445–454 (2020). https://doi.org/10.1007/s10967-020-07305-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-020-07305-3

Keywords

Navigation