Skip to main content
Log in

Explicit estimates versus numerical bounds for the electrical conductivity of dispersions with dissimilar particle shape and distribution

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

An effective-medium theory for the electrical conductivity of Ohmic dispersions taking explicit account of particle shape and spatial distribution independently is available from the work of Ponte Castañeda and Willis [J Mech Phys Solids 43:1919–1951, 1996]. When both shape and distribution take particular “ellipsoidal” forms, the theory provides analytically explicit estimates. The purpose of the present work is to evaluate the predictive capabilities of these estimates when dispersions exhibit dissimilar particle shape and distribution. To this end, comparisons are made with numerical bounds for coated ellipsoid assemblages computed via the finite element method. It is found that estimates and bounds exhibit good agreement for the entire range of volume fractions, aspect ratios, and conductivity contrasts considered, including those limiting values corresponding to an isotropic distribution of circular cracks. The fact that the explicit estimates lie systematically within the numerical bounds hints at their possible realizability beyond the class of isotropic dispersions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Banisi S, Finch JA, Laplante Ar (1993) Electrical conductivity of dispersions: a review. Minerals Eng 6:369–385

    Article  Google Scholar 

  2. Ponte Castañeda P, Willis JR (1996) The effect of spatial distribution on the effective behavior of composite materials and cracked media. J Mech Phys Solids 43:1919–1951

    Article  MathSciNet  Google Scholar 

  3. Giordano S (2017) Nonlinear effective properties of heterogeneous materials with ellipsoidal microstructure. Mech Mater 105:16–28

    Article  Google Scholar 

  4. Willis JR (1977) Bounds and self-consistent estimates for the overall properties of anisotropic composites. J Mech Phys Solids 25:185–202

    Article  Google Scholar 

  5. Hashin Z (1962) The elastic moduli of heterogeneous materials. J Appl Mech 29:143–150

    Article  MathSciNet  Google Scholar 

  6. Milton GW (2002) The theory of composites. Cambridge University Press, Cambridge

    Book  Google Scholar 

  7. Milton GW (2019) Private communication

  8. Barrett KE, Talbot DRS (1996) Bounds for the effective properties of a nonlinear two-phase composite dielectric. In: Markov KZ (ed) Proceedings on 8th international symposium, continuum models and discrete systems. World Scientific, Singapore, pp 92–99

    Google Scholar 

  9. Pastor Y, Ponte Castañeda P (2002) Yield criteria for porous media in plane strain: second-order estimates versus numerical results. Compt Rend Mec 330:741–747

    MATH  Google Scholar 

  10. Ochoa I (2018) Non-linear electrical conductivity in biphasic materials. Masters Thesis, Universidad de Buenos Aires

Download references

Acknowledgements

The work of M.I.I. was funded by the Agencia Nacional de Promoción Científica y Tecnológica through Grant PICT-2014-1988 and by the Universidad Nacional de La Plata through Grant I-2017-225.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín I. Idiart.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The tensor \(\mathbf{P}\) for an isotropic tensor \({\varvec{\sigma }}^{(1)}\) and an axisymmetric tensor \(\mathbf{Z}\)

Appendix: The tensor \(\mathbf{P}\) for an isotropic tensor \({\varvec{\sigma }}^{(1)}\) and an axisymmetric tensor \(\mathbf{Z}\)

Let \({\varvec{\sigma }}^{(1)} = \sigma ^{(1)} \mathbf{I}\) and \(\mathbf{Z}= a_\parallel \mathbf{e} \otimes \mathbf{e} + a_\perp (\mathbf{I}- \mathbf{e} \otimes \mathbf{e})\), where \(\mathbf{I}\) is the identity tensor and \(\mathbf{e}\) is the unit vector indicating the direction of axial symmetry of \(\mathbf{Z}\). In view of the isotropy of \({\varvec{\sigma }}^{(1)}\), the corresponding tensor \(\mathbf{P}\), as given by (2), inherits the axial symmetry of \(\mathbf{Z}\). Thus, we can write \(\sigma ^{(1)}\mathbf{P}= P_\parallel \mathbf{e} \otimes \mathbf{e} + P_\perp (\mathbf{I}- \mathbf{e} \otimes \mathbf{e})\), where

$$\begin{aligned} P_\parallel&= \mathbf{e} \cdot \mathbf{P}\mathbf{e} = \frac{\det \mathbf{Z}}{4\pi } \int _{|{\varvec{\xi }}|=1} (\mathbf{e} \cdot {\varvec{\xi }})^2 |\mathbf{Z}{\varvec{\xi }}|^{-3} \mathrm{d}{\varvec{\xi }}=\frac{a_\parallel a_\perp ^2}{4\pi } \int _{|{\varvec{\xi }}|=1} \frac{(\mathbf{e} \cdot {\varvec{\xi }})^2}{[a_\parallel ^2 (\mathbf{e} \cdot {\varvec{\xi }})^2 + a_\perp ^2 (1-(\mathbf{e} \cdot {\varvec{\xi }})^2)]^{3/2}} \mathrm{d}{\varvec{\xi }}\nonumber \\&= \frac{w}{2} \int _0^\pi \frac{\cos ^2\varphi }{[\sin ^2\varphi +w^2\cos ^2\varphi ]^{3/2}} \sin \varphi \ \mathrm{d}\varphi \end{aligned}$$
(9)
$$\begin{aligned} P_\parallel + 2 P_\perp&= \mathrm{tr}\mathbf{P}= \frac{\det \mathbf{Z}}{4\pi } \int _{|{\varvec{\xi }}|=1} |\mathbf{Z}{\varvec{\xi }}|^{-3} \mathrm{d}{\varvec{\xi }}= 1. \end{aligned}$$
(10)

Expressions (4) follow from these.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa, I., Idiart, M.I. Explicit estimates versus numerical bounds for the electrical conductivity of dispersions with dissimilar particle shape and distribution. J Eng Math 123, 165–171 (2020). https://doi.org/10.1007/s10665-020-10060-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-020-10060-9

Keywords

Navigation