Skip to main content

Advertisement

Log in

A ninhydrin–thiosemicarbazone based highly selective and sensitive chromogenic sensor for Hg2+ and F ions

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

This study demonstrates the design, synthesis and sensing applications of a simple and efficient chemosensor, 2-(1,3-dioxo-1H-inden-2(3H)-ylidene)hydrazinecarbothioamide (R) for quick detection of Hg2+ and F in aqueous media using a colorimetric test, UV–Vis spectral analysis, and silica gel support. Sensor R showed the typical absorption peak at 305 nm for Hg2+ which is responsible for color change from yellow to colorless, while in the case of F, R exhibits a major peak at 415 nm and a color change from yellow to red. The limit of detection (LOD) of R for the analysis of Hg2+ was calculated as 1×10−6 M while for F, it was found to be 3.4×10−7 M. The binding modes of R with Hg2+ and F have been investigated by the Job’s plot, Benesi–Hildebrand (BH) method, 1H NMR, FTIR and theoretical studies. The sensor R was reversible after treating it with reagents such as EDTA and calcium nitrate solution after contacting with Hg2+ and F, respectively. The performance of R can be successfully applied for the analysis of F contents present in toothpastes.

Graphic abstract

A simple and efficient receptor ninhydrin-based Schiff’s base (R) for quick detection of Hg2+ and F in aqueous medium using colorimetric and UV–Vis spectral analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Scheme 2
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Aragay G, Pons J and Merkoçi A 2011 Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection Chem. Rev. 111 3433

    Article  CAS  Google Scholar 

  2. Carter K P, Young A M and Palmer A E 2014 Fluorescent sensors for measuring metal ions in living systems Chem. Rev. 114 4564

    CAS  Google Scholar 

  3. Cho D G and Sessler J L 2009 Modern reaction-based indicator systems Chem. Soc. Rev. 38 1647

    Article  CAS  Google Scholar 

  4. Kaur K, Saini R, Kumar A, Luxami V, Kaur N, Singh P and Kumar S 2012 Chemodosimeters: an approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols Coord. Chem. Rev. 256 1992

    Article  CAS  Google Scholar 

  5. Santos-Figueroa L E, Moragues M E, Climent E, Agostini A, Martínez-Máñez R and Sancenon F 2013 Chromogenic and fluorogenic chemosensors and reagents for anions. A comprehensive review of the years 2010–2011 Chem. Soc. Rev. 42 3489

    Article  CAS  Google Scholar 

  6. Sareen D, Kaur P and Singh K 2014 Strategies in detection of metal ions using dyes Coord. Chem. Rev. 265 125

    Article  CAS  Google Scholar 

  7. Xu Z, Chen X, Kim H N and Yoon J 2010 Sensors for the optical detection of cyanide ion Chem. Soc. Rev. 39 127

    Article  CAS  Google Scholar 

  8. Formica M, Fusi V, Giorgi L and Micheloni M 2012 New fluorescent chemosensors for metal ions in solution Coord. Chem. Rev. 256 170

    Article  CAS  Google Scholar 

  9. Gai L, Mack J, Lu H, Nyokong T, Li Z, Kobayashi N and Shen Z 2012 Organosilicon compounds as fluorescent chemosensors for fluoride anion recognition Coord. Chem. Rev. 285 24

    Article  Google Scholar 

  10. Kim H N, Ren W X, Kim J S and Yoon J 2012 Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions Chem. Soc. Rev. 41 3210

    Article  CAS  Google Scholar 

  11. Nolan E M and Lippard S J 2008 Tools and tactics for the optical detection of mercuric ion Chem. Rev. 108 3443

    Article  CAS  Google Scholar 

  12. Yang Y, Zhao Q, Feng W and Li F 2012 Luminescent chemodosimeters for bioimaging Chem. Rev. 113 192

    Article  Google Scholar 

  13. Zhou Y, Zhang J F and Yoon J 2014 Fluorescence and colorimetric chemosensors for fluoride-ion detection Chem. Rev. 114 5511

    Article  CAS  Google Scholar 

  14. Ayoob S and Gupta A K 2006 Fluoride in drinking water: a review on the status and stress effects Crit. Rev. Environ. Sci. Technol. 36 433

    Article  CAS  Google Scholar 

  15. Cametti M and Rissanen K 1983 Recognition and sensing of fluoride anion Chem. Commun. 20 2809

  16. Wergedal J E and Baylink D J Fluoride directly stimulates proliferation and alkaline phosphatase activity of bone-forming cells Science 222 330

  17. Kleerekoper M The role of fluoride in the prevention of osteoporosis Endocrinol. Metab. Clin. 27 441

  18. Yamaguchi S, Akiyama S and Tamao K Colorimetric fluoride ion sensing by boron-containing π-electron systems J. Am. Chem. Soc. 123 11372

  19. Cittanova M L, Lelongt B, Verpont M C, Geniteau-Legendre M, Wahbe F, Prie D, Coriat P and Ronco P M 1996 Fluoride ion toxicity in human kidney collecting duct cells Anesthesiology 84 428

  20. Kim S Y, Park J, Koh M, Park S B and Hong J I 2009 Fluorescent probe for detection of fluoride in water and bioimaging in A549 human lung carcinoma cells Chem. Commun. 31 4735

  21. Singh P, Barjatiya M, Dhing S, Bhatnagar R, Kothari S and Dhar V 2001 Evidence suggesting that high intake of fluoride provokes nephrolithiasis in tribal populations Urol. Res. 29 238

    Article  CAS  Google Scholar 

  22. Wang C and Wong K M C 2013 Selective Hg2+ sensing behaviors of rhodamine derivatives with extended conjugation based on two successive ring-opening processes Inorg. Chem. 52 13432

    Article  CAS  Google Scholar 

  23. He S, Liu Q, Li Y, Wei F, Cai S, Lu Y and Zeng X 2014 Rhodamine 6G-based chemosensor for the visual detection of Cu2+ and fluorescent detection of Hg2+ in water Chem. Res. Chinese Univ. 30 32

    Article  Google Scholar 

  24. Khatua S and Schmittel M 2013 A single molecular light-up sensor for quantification of Hg2+ and Ag+ in aqueous medium: high selectivity toward Hg2+ over Ag+ in a mixture Org. Lett. 15 4422

    Article  CAS  Google Scholar 

  25. Parthiban C, Manivannan R and Elango K P 2015 Highly selective colorimetric sensing of Hg (II) ions in aqueous medium and in the solid state via formation of a novel M–C bond Dalt. Trans. 44 3259

    Article  CAS  Google Scholar 

  26. Varghese A and George L 2012 Simultaneous first order derivative spectrophotometric determination of vanadium and zirconium in alloy steels and minerals Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 95 46

    Article  CAS  Google Scholar 

  27. Easmon J, Pürstinger G, Heinisch G, Roth T, Fiebig H H, Holzer W, Jäger W, Jenny M and Hofmann J 2001 Synthesis, cytotoxicity, and antitumor activity of copper (II) and iron (II) complexes of 4 N-azabicyclo[3.2.2]nonane thiosemicarbazones derived from acyl diazines J. Med. Chem. 44 2164

  28. Chellan P, Nasser S, Vivas L, Chibale K and Smith G S 2010 Cyclopalladated complexes containing tridentate thiosemicarbazone ligands of biological significance: Synthesis, structure and antimalarial activity J. Organomet. Chem. 695 2225

    Article  CAS  Google Scholar 

  29. Calatayud D G, López Torres E and Mendiola M A 2013 A fluorescent dissymmetric thiosemicarbazone ligand containing a hydrazonequinoline arm and its complexes with cadmium and mercury Eur. J. Inorg. Chem. 1 80

    Article  Google Scholar 

  30. Su H, Huang W, Yang Z, Lin H and Lin H 2012 2-Hydroxy-naphth-1-aldehyde phenyl-thiosemicarbazone: effective thiourea-based sensor for acetate anion J. Incl. Phenom. Macrocycl. Chem. 72 221

    Article  CAS  Google Scholar 

  31. Raju V, Ashok Kumar S K, Abbareddy D S, Rao M and Sahoo S K 2017 Isatin-3-phenylhydrazone: a highly selective colorimetric chemosensor for copper, chromium and cobalt ions in semi-aqueous medium Sens. Lett. 15 266

    Article  Google Scholar 

  32. West D X, Liberta A E, Padhye S B, Chikate R C, Sonawane P B, Kumbhar A S and Yerande R G 1993 Thiosemicarbazone complexes of copper(II): structural and biological studies, Coord. Chem. Rev. 123 49

    Article  CAS  Google Scholar 

  33. Tian Y P, Duan C Y, Lu Z L, You X Z, Fun H K and Kandasamy S 1996 Crystal structure and spectroscopic studies on metal complexes containing ns donor ligands derived from S-benzyldithiocarbazate and p-dimethylaminobenzaldehyde Polyhedron. 15 2263

  34. Souza P, Matesanz A I and Fernández V 1996 Copper (II) and cobalt (II) complexes of methyl 2-pyridyl ketone thiosemicarbazone (HL); single-crystal structure of [Cu (HL) L] NCS J. Chem. Soc. Dalt. Trans. 14 3011

  35. Lu Z, White C, Rheingold A L and Crabtree R H 1993 Deprotonated thioamides as thiolate S-donor ligands with a high tendency to avoid MSM bridge formation: crystal and molecular structure of bis(2-hydroxy-5-methylacetophenone N,N-dimethylthiosemicarbazonato)dinickel Inorg. Chem. 32 3991

    Article  CAS  Google Scholar 

  36. Kumar R R, Ramesh R and Małecki J G 2016 Steric control on the coordination behaviour of carbazole thiosemicarbazones towards [RuH (Cl)(CO)(AsPh 3)3]: a combined experimental and theoretical study New J. Chem. 40 10084

    Article  Google Scholar 

  37. Frisch M J et al. 2009 Gaussian 09, Revision A.02 (Wallingford, CT: Gaussian, Inc.)

  38. Wu C, Wang J, Shen J, Bi C and Zhou H 2017 Coumarin-based Hg2+ fluorescent probe: Synthesis and turn-on fluorescence detection in neat aqueous solution Sensors Actuators B Chem. 243 678

  39. Wang J, Li W and Long L 2017 Development of a near-infrared fluorescence turn-on probe for imaging Hg2+ in living cells and animals Sensors Actuators B Chem. 245 462

    Article  CAS  Google Scholar 

  40. Guo Z, Zhu W, Zhu M, Wu X and Tian H 2010 Near infrared cell permeable Hg2+ selective ratiometric fluorescent chemodosimeters and fast indicator paper for MeHg+ based on tricarbocyanines Chem. Eur. J. 16 14424

    Article  CAS  Google Scholar 

  41. Momidi B K, Tekuri V and Trivedi D R 2016 Selective detection of mercury ions using benzothiazole based colorimetric chemosensor Inorg. Chem. Commun. 74 1

    Article  CAS  Google Scholar 

  42. Pan J T, Zhu F, Kong L, Yang L M, Tao X T, Tian Y P, Lu H B and Yang J X 2015 A simple pyridine-based colorimetric chemosensor for highly sensitive and selective mercury (II) detection with the naked eye Chem. Pap. 69 527.

    Article  CAS  Google Scholar 

  43. Ma L, Leng T, Wang K, Wang C, Shen Y and Zhu W 2017 A coumarin-based fluorescent and colorimetric chemosensor for rapid detection of fluoride ion Tetrahedron 73 1306

    Article  CAS  Google Scholar 

  44. Chavali R, Gunda N S K, Naicker S and Mitra S K 2015 Rapid detection of fluoride in potable water using a novel fluorogenic compound 7-O-tert-butyldiphenylsilyl-4-methylcoumarin Anal. Chem. Res. 6 26

    Article  CAS  Google Scholar 

  45. Mohammadi A and Jabbari J 2016 Simple naked-eye colorimetric chemosensors based on Schiff-base for selective sensing of cyanide and fluoride ions Can. J. Chem. 94 631

    Article  CAS  Google Scholar 

  46. Chen Z J, Wang L M, Zou G, Zhang L, Zhang G J, Cai X F and Teng M S 2012 Colorimetric and ratiometric fluorescent chemosensor for fluoride ion based on perylene diimide derivatives Dye. Pigment. 94 410

    Article  CAS  Google Scholar 

  47. Vinithra G, Suganya S and Velmathi S 2013 Naked eye sensing of anions using thiourea based chemosensors with real time application Tetrahedron Lett. 54 5612

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to the Department of Science and Technology, GOI for supporting the work through the project grant (EMR/2017/000816). Authors are also thankful to DST-VIT-FIST for NMR and GC-MS for research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Ashok Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raju, V., Kumar, R.S., Kumar, S.K.A. et al. A ninhydrin–thiosemicarbazone based highly selective and sensitive chromogenic sensor for Hg2+ and F ions. J Chem Sci 132, 89 (2020). https://doi.org/10.1007/s12039-020-01799-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01799-w

Keywords

Navigation