Skip to main content
Log in

Concise review of Osmundea pinnatifida (Hudson) Stackhouse

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Osmundea pinnatifida is an edible red seaweed well-known for its strong smell and a slightly spicy taste that resembles mussels, crabs, or truffles, therefore being commonly called “pepper dulse” or “truffle of the sea.” Due to these features, it has a great potential for gastronomic purposes (either in simple/traditional or haute cuisine dishes), which led to an interest in its farming. However, to date, there is no known commercial cultivation of this species, which might be due mostly to its nature (it is a light-sensitive seaweed) and slow growth. The present work compiles the published literature on O. pinnatifida and presents a concise review on this species’ nomenclature and taxonomy, ecology, geographical distribution, cultivation, and of its biotechnological potential, namely in bioremediation, gastronomy, and pharmacology (nutritional and biological activities—prebiotic, antioxidant, antitumor, antiviral, antiprotozoal, antibacterial, antifouling, and antifungal).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbaspour N, Hurrell R, Kelishadi R (2014) Review on iron and its importance for human health. J Res Med Sci 19:164–174

    PubMed  PubMed Central  Google Scholar 

  • Abreu MH, Pereira R, Yarish C, Buschmann AH, Sousa-Pinto I (2011) IMTA with Gracilaria vermiculophylla: productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 312:77–87

  • Abu-Dahab R (2007) Antiproliferative activity of selected medicinal plants of Jordan against a breast adenocarcinoma cell line (MCF7). Sci Pharm 75:121–136

    Article  Google Scholar 

  • Ahmed K, Munawar S, Mahmood T, Mahmood I (2015) Biochemical analysis of some species of seaweeds from Karachi coastal area. FUUAST J Biol 5:43–45

    Google Scholar 

  • Allmendinger A, Spavieri J, Kaiser M, Casey R, Hingley-Wilson S, Lalvani A, Guiry M, Blunden G, Tasdemir D (2010) Antiprotozoal, antimycobacterial and cytotoxic potential of twenty-three British and Irish red algae. Phyther Res 24:1099–1103

    Article  Google Scholar 

  • Anderson JW, Baird P, Davis RH, Ferreri S, Knudtsen M, Koryam A, Waters V, Williams CL (2009) Health benefits of dietary fiber. Nutr Rev 67:188–205

    Article  PubMed  Google Scholar 

  • Andrade PB, Barbosa M, Matos RP, Lopes G, Vinholes J, Mouga T, Valentao P (2013) Valuable compounds in macroalgae extracts. Food Chem 138:1819–1828

    Article  CAS  PubMed  Google Scholar 

  • Barreto MC, Mendonça E, Gouveia V, Anjos C, Medeiros JS, Seca AMI, Neto AI (2012) Macroalgae from S. Miguel Island as a potential source of antiproliferative and antioxidant products. Arquipelago Life Mar Sci 29:53–58

    Google Scholar 

  • Biancacci C, Day JG, McDougall G, Russell MC, Stanley MS (2017). Pepper dulse: the truffle of the sea. Insight in Osmundea pinnatifida cultivation. Phycologia, 56(4(Suppl)): 18–19

  • Bleckwenn A, Gil-Rodríguez MC, Medina M, Schnetter R (2003) Possible significance of different DNA content ranges of gametophytic and tetrasporophytic nuclei in two species of Laurencia (Rhodomelaceae, Rhodophyta). Eur J Phycol 38:307–314

  • Bouhlal R, Riadi H, Martínez J, Bourgougnon N (2010) The antibacterial potential of the seaweeds (Rhodophyceae) of the Strait of Gibraltar and the Mediterranean Coast of Morocco. J Biotechnol 9:6365–6372

    Google Scholar 

  • Campos AM, Matos J, Afonso C, Gomes R, Bandarra NM, Cardoso C (2019) Azorean macroalgae (Petalonia binghamiae, Halopteris scoparia and Osmundea pinnatifida) bioprospection: a study of fatty acid profiles and bioactivity. Int J Food Sci Technol 54:880–890

    Article  CAS  Google Scholar 

  • Cardoso SM, Carvalho LG, Silva PJ, Rodriegues RS, Pereira OR, Pereira L (2014) Bioproducts from seaweeds: a review with special focus on the Iberian Peninsula. Curr Org Chem 18:896–917

    Article  CAS  Google Scholar 

  • El Amrani Zerrifi S, Tazart Z, El Khalloufi F, Oudra B, Campos A, Vasconcelos V (2019) Potential control of toxic cyanobacteria blooms with Moroccan seaweed extracts. Environ Sci Pollut Res 26:15218–15228

  • El Bulli (n.d.) Catálogo General elBulli 1983–2011. http://www.elbulli.com/catalogo/catalogo/anyo_familia.php?lang=es&id_familia=7&anyo=2006&id=1258

  • Esteban R, Martínez B, Fernández-Marín B, Becerril JM, Garcia-Plazaola JI (2009) Carotenoid composition in Rhodophyta: insights into xanthophyll regulation in Corallina elongata. Eur J Phycol 44:221–230

    Article  CAS  Google Scholar 

  • Gonçalves M (2018) Cultivation of Osmundea pinnatifida and Codium tomentosum, native seaweed species with comercial potential. Master Thesis, Universidade do Porto, Porto

  • Gorman L, Kraemer GP, Yarish C, Boo SM, Kim JK (2017) The effects of temperature on the growth rate and nitrogen content of invasive Gracilaria vermiculophylla and native Gracilaria tikvahiae from Long Island sound, USA. Algae 32:57–66

  • Guiry MD, Guiry GM (2019) AlgaeBase. World-wide electronic publication. National University of Ireland, Galway http://www.algaebase.org

  • Hishamunda N, Cai J, Leung P (2009) Commercial aquaculture and economic growth, poverty alleviation and food security, assessment framework. FAO, Rome

    Google Scholar 

  • Jiménez-Escrig A, Gómez-Ordóñez E, Rupérez P (2012) Brown and red seaweeds as potential sources of antioxidant nutraceuticals. J Appl Phycol 24:1123–1132

    Article  CAS  Google Scholar 

  • Jones PJ, AbuMweis SS (2009) Phytosterols as functional food ingredients: linkages to cardiovascular disease and cancer. Curr Opin Clin Nutr Metab Care 12:147–151

  • Kanti BP, Syed IR (2009) Plant polyphenols as dietary antioxidants in human health and disease, oxidative medicine and cellular longevity. Landes Biosci 2:270–278

    Google Scholar 

  • Kim JK, Yarish C, Hwang EK, Park M, Kim Y (2017) Seaweed aquaculture: cultivation technologies, challenges and its ecosystem services. Algae 32:1–13

  • Leite B (2017) Novas Alternativas para o Uso de Macroalgas da Costa Portuguesa em Alimentação. Master Thesis, Universidade Nova de Lisboa, Lisbon, Portugal

  • Lewis S, Gacesa P, Gil-Rodríguez MC, Valdés F, Frías I (2008) Molecular systematics of the genera Laurencia, Osmundea and Palisada (Rhodophyta) from the Canary Islands -analysis of rDNA and RUBISCO spacer sequences. An Jard Bot Madrid 65:97–109

    Google Scholar 

  • Li H, Yu X, Jin Y, Zhang W, Liu Y (2008) Development of an eco-friendly agar extraction technique from the red seaweed Gracilaria lemaneiformis. Bioresour Technol 99:3301–3305

    Article  CAS  PubMed  Google Scholar 

  • Lopes G, Sousa C, Bernardo J, Antrade PB, Valentao P, Ferreres F, Mouga T (2011) Sterol profiles in 18 macroalgae of the Portuguese coast. J Phycol 47:1210–1218

    Article  CAS  PubMed  Google Scholar 

  • Lopes G, Sousa C, Valentão P, Andrade PB (2013) Sterols in algae and health. In: Hernades-Lesdesma B, Herrero M (eds) Bioactive compounds from marine foods: plant and animal sources. John Wiley and Sons Ltd, Chichester, UK, pp 173–191

  • Lunn J, Theobald HE (2006) The health effects of dietary unsaturated fatty acids. Nutr Bull 31:178–224

    Article  Google Scholar 

  • Machín-Sánchez M, Díaz-Larrea J, Fujii MT, Senties A, Cassano V, Gil-Rodrigues MC (2012) Morphological and molecular evidences within Osmundea (Ceramiales, Rhodophyta) from the Canary Islands, eastern Atlantic Ocean. Afr J Mar Sci 34:27–42

    Article  Google Scholar 

  • Machín-Sánchez M, Asensio-Ramos M, Hernández-Borges J, Gil-Rodríguez MC (2014) CE-MS fingerprinting of Laurencia complex algae (Rhodophyta). J Sep Sci 37:711–716

    Article  PubMed  CAS  Google Scholar 

  • Machín-Sánchez M, Rousseau F, Le Gall L, Cassano V, Neto AI, Senties A, Fujii MT, Gil-Rodriguez MC (2016) Species diversity of the genus Osmundea (Ceramiales, Rhodophyta) in the Macaronesian region. J Phycol 52:664–681

    Article  PubMed  Google Scholar 

  • Maréchal JP, Hellio C (2011) Antifouling activity against barnacle cypris larvae: do target species matter (Amphibalanus amphitrite versus Semibalanus balanoides)? Int Biodeterior Biodegrad 65:92–101

    Article  CAS  Google Scholar 

  • Marsham S, Scott GW, Tobin ML (2007) Comparison of nutritive chemistry of a range of temperate seaweeds. Food Chem 100:1331–1336

    Article  CAS  Google Scholar 

  • Martin-Lescanne J, Rousseau F, De Reviers B, Payri C, Couloux A, Cruaud C, Le Gall L (2010) Phylogenetic analyses of the Laurencia complex ( Rhodomelaceae , Ceramiales ) support recognition of five genera : Chondrophycus, Laurencia , Osmundea, Palisada and Yuzurua stat. nov. Eur J Phycol 45:51–61

    Article  Google Scholar 

  • Metti Y, Millar AJK, Steinberg P (2015) A new molecular phylogeny of the Laurencia complex (Rhodophyta, Rhodomelaceae) and a review of key morphological characters result in a new genus, Coronaphycus, and a description of C. novus. J Phycol 51:929–942

    Article  PubMed  Google Scholar 

  • Mouritsen OG, Rhatigan P, Pérez-Lloréns JL (2018) World cuisine of seaweeds: science meets gastronomy. Int J Gastron Food Sci 14:55–65

    Article  Google Scholar 

  • Milchakova N (2011) Marine plants of the black sea. In: An illustrated field guide. Digit Print Press, Sevastopol

  • Mouritsen OG, Rhatigan P, Pérez-Lloréns JL (2019) The rise of seaweed gastronomy: phycogastronomy. Bot Mar. 62:195-209

  • Nam KW, Maggs CA, Garbary DJ (1994) Resurrection of the genus Osmundea with an emendation of the generic delineation of Laurencia (Ceramiales, Rhodophyta). Phycologia 33:384–395

    Article  Google Scholar 

  • Nam KW, Maggs CA, McIvor L, Stanhope MJ (2000) Taxonomy and phylogeny of Osmundea (Rhodomelaceae, Rhodophyta) in Atlantic Europe. J Phycol 36:759–772

    Article  PubMed  Google Scholar 

  • OBIS (2020) Ocean biogeographic information system. Intergovernmental Oceanographic Commission of UNESCO. https://obis.org/taxon/144847. Accessed 27 March 2020

  • Paiva L, Lima E, Patarra RF, Neto AI, Baptista J (2014) Edible Azorean macroalgae as source of rich nutrients with impact on human health. Food Chem 164:128–135

    Article  CAS  PubMed  Google Scholar 

  • Patarra RF, Paiva L, Neto AI, Lima E, Baptista J (2011) Nutritional value of selected macroalgae. J Appl Phycol 23:205–208

    Article  CAS  Google Scholar 

  • Patarra RF, Leite J, Pereira R, Baptista J, Neto AI (2013) Fatty acid composition of selected macrophytes. Nat Prod Res 27:665–669

    Article  CAS  PubMed  Google Scholar 

  • Pereira L (2009) Guia ilustrado das Macroalgas. Imprensa da Universidade de Coimbra/Coimbra University Press

  • Pereira L (2015) Seaweed Flora of the European North Atlantic and Mediterranean. In: Kim S (ed) Springer handbook of marine biotechnology. Springer, Berlin, pp 65–178

  • Pereira L (2016) Edible seaweeds of the world. Science Publishers, Boca Raton, p 448

  • Rajapakse N, Kim SK (2011) Nutritional and digestive health benefits of seaweed. Adv Food Nutr Res 64:17–28

    Article  CAS  PubMed  Google Scholar 

  • Rizvi MA, Shameel M (2005) Pharmaceutical biology of seaweeds from the Karachi coast of Pakistan. Pharm Biol 43:97–107

    Article  CAS  Google Scholar 

  • Rodrigues D, Freitas AC, Pereira L, Rocha-Santos TAP, Vasconcelos MW, Roriz M, Rodríguez-Alcalá LM, Gomes AMP, Duarte AC (2015a) Chemical composition of red, brown and green macroalgae from Buarcos bay in Central West Coast of Portugal. Food Chem 183:197–207

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues D, Sousa S, Silva A, Amorim M, Pereira L, Rocha-Santos TAP, Gomes AMP, Duarte AC, Freitas AC (2015b) Impact of enzyme- and ultrasound-assisted extraction methods on biological properties of red, brown, and green seaweeds from the Central West Coast of Portugal. J Agric Food Chem 63:3177–3188

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues D, Walton G, Sousa S, Rocha-Santos TAP, Duarte AC, Freitas AC, Gomes AMP (2016) In vitro fermentation and prebiotic potential of selected extracts from seaweeds and mushrooms. LWT - Food Sci Technol 73:131–139

    Article  CAS  Google Scholar 

  • Rodrigues D, Costa-Pinto AR, Sousa S, Vasconcelos MW, Pintado MM, Pereira L, Rocha-Santos TA, Costa JP, Silva AM, Duarte AC, Gomes AM, Freitas AC (2019) Sargassum muticum and Osmundea pinnatifida enzymatic extracts: chemical, structural, and cytotoxic characterization. Mar Drugs 17:209

    Article  CAS  PubMed Central  Google Scholar 

  • Sabina H, Aliya R (2011) Bioactive assessment of selected marine red algae against Leishmania major and chemical constituents of Osmundea pinnatifida. Pakistan J Bot 43:3053–3056

    CAS  Google Scholar 

  • Sánchez-Moreno C (2002) Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci Technol Int 8:121–137

    Article  Google Scholar 

  • Schnetter R, Gil-Rodriguez M, Medina M, Doering J, Henne K, Hernández-González M (2000) Distinction of gametophytes and tetrasporophytes by microfluorometry in Osmundea pinnatifida (Rhodophyta) from Canary Islands. Phycologia 39:147–152

  • Silva P (2015) Screening of biotechnological potential of Osmundea pinnatifida: cultivation trials and biological activities. Master Thesis, Universidade de Coimbra, Coimbra

  • Silva P, Fernandes C, Barros L, Ferreira ICFR, Prereira L, Goncalves T (2018) The antifungal activity of extracts of Osmundea pinnatifida , an edible seaweed, indicates its usage as a safe environmental fungicide or as a food additive preventing post-harvest fungal food contamination. Food Funct 9:6187–6195

    Article  CAS  PubMed  Google Scholar 

  • Silva JP, Alves C, Pinteus S, Silva J, Valado A, Pedrosa R, Pereira L (2019) Antioxidant and antitumor potential of wild and IMTA-cultivated Osmundea pinnatifida. J Oceanol Limnol 37:825–835

    Article  CAS  Google Scholar 

  • Spavieri J, Allmendinger A, Kaiser M, Itoe MA, Blunden G, Mota MM, Tasdemir D (2013) Assessment of dual life stage antiplasmodial activity of british seaweeds. Mar Drugs 11:4019–4034

    Article  PubMed  PubMed Central  Google Scholar 

  • Tasende MG, Peteiro C (2015) Explotación de las macroalgas marinas: Galicia como caso de estudio hacia una gestión sostenible de los recursos. Ambienta 111:116–132

  • Uddin MS, Ferdosh S, Haque Akanda MJ, Ghafoor K, Rukshana AH, Ali ME, Kamaruzzaman BY, Fauzi MB, Hadijah S, Shaarani S, Islam Sarker MZ (2018) Techniques for the extraction of phytosterols and their benefits in human health: a review. Sep Sci Technol 53:2206–2223

    Article  CAS  Google Scholar 

  • Vieira EF, Soares C, Machado S, Correia M, Ramalhosa MJ, Oliva-teles MT, Paula Carvalho A, Domingues VF, Antunes F, Oliveira TAC, Morais S, Delerue-Matos C (2018) Seaweeds from the Portuguese coast as a source of proteinaceous material: total and free amino acid composition profile. Food Chem 269:264–275

    Article  CAS  PubMed  Google Scholar 

  • Wahrburg U (2004) What are the health effects of fat? Eur J Nutr 43:I/6– I/11. https://doi.org/10.1007/s00394-004-1103-9

Download references

Funding

Leonel Pereira had the support of Foundation for Science and Technology (FCT), within the scope of the project UIDB/04292/2020 – MARE - Marine and Environmental Sciences Centre. Paulo Silva’s work was supported by the Applied Molecular Biosciences Unit - UCIBIO which is financed by national funds from FCT (UIDB/04378/2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Silva.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, P., Pereira, L. Concise review of Osmundea pinnatifida (Hudson) Stackhouse. J Appl Phycol 32, 2761–2771 (2020). https://doi.org/10.1007/s10811-020-02183-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02183-4

Keywords

Navigation