Skip to main content
Log in

Rate-dependent drag instability in granular materials

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We investigate the conditions leading to large drag force fluctuations in granular materials. The study is based on a set of experimental drag tests, which involve pulling a plate vertically through a cohesionless granular material. In agreement with previous observations, drag force exhibits significant and sudden drops-up to 60%—when the plate is pulled out at low velocities. We further find that this instability vanishes at higher pullout velocities and near the surface. We empirically characterise the frequency and amplitude of these fluctuations and find that these properties are not consistent with a classical stick-slip dynamics. We therefore propose an alternative physical mechanism that can explain these force fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Al-Hashemi, H.M.B., Al-Amoudi, O.S.B.: A review on the angle of repose of granular materials. Powder Technol. 330, 397–417 (2018)

    Google Scholar 

  2. I, Albert, J, Sample, A, Morss, S, Rajagopalan, A.L, Barabási, P, Schiffer: Granular drag on a discrete object: shape effects on jamming. Phys. Rev. E 64(6), 061–303 (2001)

    Google Scholar 

  3. Albert, I., Tegzes, P., Albert, R., Sample, J., Barabási, A.L., Vicsek, T., Kahng, B., Schiffer, P.: Stick-slip fluctuations in granular drag. Phys. Rev. E 64(3), 031–307 (2001)

    Google Scholar 

  4. Albert, I., Tegzes, P., Kahng, B., Albert, R., Sample, J., Pfeifer, M., Barabasi, A.L., Vicsek, T., Schiffer, P.: Jamming and fluctuations in granular drag. Phys. Rev. Lett. 84(22), 5122 (2000)

    ADS  Google Scholar 

  5. Albert, R., Pfeifer, M., Barabási, A.L., Schiffer, P.: Slow drag in a granular medium. Phys. Rev. Lett. 82(1), 205 (1999)

    ADS  Google Scholar 

  6. Askari, H., Kamrin, K.: Intrusion rheology in grains and other flowable materials. Nat. Mater. 15(12), 1274 (2016)

    ADS  Google Scholar 

  7. Athani, S., Kharel, P., Airey, D., Rognon, P.: Grain-size effect on uplift capacity of plate anchors in coarse granular soils. Géotechnique Lett. 7, 167–173 (2017)

    Google Scholar 

  8. Athani, S., Rognon, P.: Mobility in granular materials upon cyclic loading. Granul. Matter 20(4), 67 (2018)

    Google Scholar 

  9. Athani, S., Rognon, P.: Inertial drag in granular media. Phys. Rev. Fluids 4(12), 124–302 (2019)

    Google Scholar 

  10. Baker, J., Guillard, F., Marks, B., Einav, I.: X-ray rheography uncovers planar granular flows despite non-planar walls. Nat. Commun. 9(1), 1–9 (2018)

    Google Scholar 

  11. Bhattacharya, P., Kumar, J.: Pullout capacity of inclined plate anchors embedded in sand. Can. Geotech. J. 51(11), 1365–1370 (2014)

    Google Scholar 

  12. Candelier, R., Dauchot, O.: Creep motion of an intruder within a granular glass close to jamming. Phys. Rev. Lett. 103(12), 128001 (2009)

    ADS  Google Scholar 

  13. Cassar, C., Nicolas, M., Pouliquen, O.: Submarine granular flows down inclined planes. Phys. Fluids 17(10), 103–301 (2005)

    MATH  Google Scholar 

  14. Costantino, D., Bartell, J., Scheidler, K., Schiffer, P.: Low-velocity granular drag in reduced gravity. Phys. Rev. E 83(1), 011–305 (2011)

    Google Scholar 

  15. Costantino, D.J., Scheidemantel, T.J., Stone, M.B., Conger, C., Klein, K., Lohr, M., Modig, Z., Schiffer, P.: Starting to Move through a granular medium. Phys. Rev. Lett. 101(10), 108001 (2008)

    ADS  Google Scholar 

  16. Da Cruz, F., Emam, S., Prochnow, M., Roux, J.N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72(2), 021–309 (2005)

    Google Scholar 

  17. Dalton, F., Corcoran, D.: Self-organized criticality in a sheared granular stick-slip system. Phys. Rev. E 63(6), 061–312 (2001)

    Google Scholar 

  18. Das, B.M., Shukla, S.K.: Earth Anchors. J. Ross Publishing, Lauderdale (2013)

    Google Scholar 

  19. Demirel, A.L., Granick, S.: Friction fluctuations and friction memory in stick-slip motion. Phys. Rev. Lett. 77(21), 4330 (1996)

    ADS  Google Scholar 

  20. Ding, Y., Gravish, N., Goldman, D.I.: Drag induced lift in granular media. Phys. Rev. Lett. 106(2), 028–001 (2011)

    Google Scholar 

  21. du Pont, S.C., Gondret, P., Perrin, B., Rabaud, M.: Granular avalanches in fluids. Phys. Rev. Lett. 90(4), 044–301 (2003)

    Google Scholar 

  22. Duri, A., Mandato, S., Mabille, F., Cuq, B., Ruiz, T.: Vertical slow drag of an intruder in a laterally confined granular medium. In: EPJ Web of Conferences, vol. 140, p. 03083. EDP Sciences (2017)

  23. Dyson, A., Rognon, P.: Pull-out capacity of tree root inspired anchors in shallow granular soils. Géotechnique Lett. 4(4), 301–305 (2014)

    Google Scholar 

  24. Farin, M., Mangeney, A., Roche, O.: Fundamental changes of granular flow dynamics, deposition, and erosion processes at high slope angles: insights from laboratory experiments. J. Geophys. Res. Earth Surf. 119(3), 504–532 (2014)

    ADS  Google Scholar 

  25. Fischer, R., Gondret, P., Perrin, B., Rabaud, M.: Dynamics of dry granular avalanches. Phys. Rev. E 78(2), 021–302 (2008)

    Google Scholar 

  26. Geng, J., Behringer, R.P.: Slow drag in two-dimensional granular media. Phys. Rev. E 71(1), 011–302 (2005)

    Google Scholar 

  27. Giampa, J., Bradshaw, A., Gerkus, H., Gilbert, R., Gavin, K., Sivakumar, V.: The effect of shape on the pull-out capacity of shallow plate anchors in sand. Géotechnique 69, 355–363 (2018)

    Google Scholar 

  28. Gravish, N., Umbanhowar, P.B., Goldman, D.I.: Force and flow transition in plowed granular media. Phys. Rev. Lett. 105(12), 128–301 (2010)

    Google Scholar 

  29. Guillard, F., Forterre, Y., Pouliquen, O.: Depth-independent drag force induced by stirring in granular media. Phys. Rev. Lett. 110(13), 138–303 (2013)

    Google Scholar 

  30. Harich, R., Darnige, T., Kolb, E., Clément, E.: Intruder mobility in a vibrated granular packing. EPL (Europhys. Lett.) 96(5), 54003 (2011)

    ADS  Google Scholar 

  31. Hilton, J., Tordesillas, A.: Drag force on a spherical intruder in a granular bed at low froude number. Phys. Rev. E 88(6), 062–203 (2013)

    Google Scholar 

  32. Hossain, T., Rognon, P.: Drag force in immersed granular materials. Phys. Rev. Fluids 5(5), 054–306 (2020)

    Google Scholar 

  33. Howell, D., Behringer, R., Veje, C.: Stress fluctuations in a 2d granular couette experiment: a continuous transition. Phys. Rev. Lett. 82(26), 5241 (1999)

    ADS  Google Scholar 

  34. Khatri, V.N., Kumar, J.: Effect of anchor width on pullout capacity of strip anchors in sand. Can. Geotech. J. 48(3), 511–517 (2011)

    Google Scholar 

  35. Kolb, E., Cixous, P., Gaudouen, N., Darnige, T.: Rigid intruder inside a two-dimensional dense granular flow: drag force and cavity formation. Phys. Rev. E 87(3), 032–207 (2013)

    Google Scholar 

  36. Kumar, J., Kouzer, K.: Vertical uplift capacity of horizontal anchors using upper bound limit analysis and finite elements. Can. Geotech. J. 45(5), 698–704 (2008)

    Google Scholar 

  37. Lherminier, S., Planet, R., dit Vehel, V.L., Simon, G., Vanel, L., Måløy, K., Ramos, O.: Continuously sheared granular matter reproduces in detail seismicity laws. Phys. Rev. Lett. 122(21), 218–501 (2019)

    Google Scholar 

  38. Merifield, R., Sloan, S.: The ultimate pullout capacity of anchors in frictional soils. Can. Geotech. J. 43(8), 852–868 (2006)

    Google Scholar 

  39. Meyerhof, G., Adams, J.: The ultimate uplift capacity of foundations. Can. Geotech. J. 5(4), 225–244 (1968)

    Google Scholar 

  40. MiDi, G.: On dense granular flows. Eur. Phys. J. E 14(4), 341–365 (2004)

    Google Scholar 

  41. Miller, B., O’Hern, C., Behringer, R.: Stress fluctuations for continuously sheared granular materials. Phys. Rev. Lett. 77(15), 3110 (1996)

    ADS  Google Scholar 

  42. Murray, E.J., Geddes, J.D.: Uplift of anchor plates in sand. J. Geotech. Eng. 113(3), 202–215 (1987)

    Google Scholar 

  43. Nguyen, M., Coppersmith, S.: Properties of layer-by-layer vector stochastic models of force fluctuations in granular materials. Phys. Rev. E 59(5), 5870 (1999)

    ADS  Google Scholar 

  44. Otsuki, M., Hayakawa, H.: Avalanche contribution to shear modulus of granular materials. Phys. Rev. E 90(4), 042–202 (2014)

    Google Scholar 

  45. Percier, B., Manneville, S., McElwaine, J.N., Morris, S.W., Taberlet, N.: Lift and drag forces on an inclined plow moving over a granular surface. Phys. Rev. E 84(5), 051–302 (2011)

    Google Scholar 

  46. Potiguar, F.Q., Ding, Y.: Lift and drag in intruders moving through hydrostatic granular media at high speeds. Phys. Rev. E 88(1), 012–204 (2013)

    Google Scholar 

  47. Pouliquen, O.: Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11(3), 542–548 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Rognon, P., Einav, I., Gay, C.: Internal relaxation time in immersed particulate materials. Phys. Rev. E 81(6), 061–304 (2010)

    Google Scholar 

  49. Rognon, P.G., Einav, I., Gay, C.: Flowing resistance and dilatancy of dense suspensions: lubrication and repulsion. J. Fluid Mech. 689, 75–96 (2011)

    ADS  MATH  Google Scholar 

  50. Rowe, R.K., Davis, E.H.: Behaviour of anchor plates in sand. Geotechnique 32(1), 25–41 (1982)

    Google Scholar 

  51. Rozman, M., Urbakh, M., Klafter, J.: Stick-slip motion and force fluctuations in a driven two-wave potential. Phys. Rev. Lett. 77(4), 683 (1996)

    ADS  Google Scholar 

  52. Sakai, T., Tanaka, T.: Scale effect of a shallow circular anchor in dense sand. Soils Found. 38(2), 93–99 (1998)

    Google Scholar 

  53. Seguin, A.: Hysteresis of the drag force of an intruder moving into a granular medium. Eur. Phys. J. E 42(1), 13 (2019)

    ADS  Google Scholar 

  54. Takehara, Y., Fujimoto, S., Okumura, K.: High-velocity drag friction in dense granular media. EPL (Europhys. Lett.) 92(4), 44003 (2010)

    ADS  Google Scholar 

  55. Takehara, Y., Okumura, K.: High-velocity drag friction in granular media near the jamming point. Phys. Rev. Lett. 112(14), 148–001 (2014)

    Google Scholar 

  56. Zadeh, A.A., Barés, J., Behringer, R.: Avalanches in a granular stick-slip experiment: detection using wavelets. In: Powders and Grains 2017 (2017)

Download references

Funding

Funding was provided by Australian Research Council Discovery Project (Grant No. DP200101927).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Rognon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Testing of the experimental setup

Appendix: Testing of the experimental setup

Two tests were conducted to assess the effect of the shaft and to quantify the stiffness of the loading frame and plate.

1.1 Effect of the shaft

An uplift test was performed without any plate attached to the shaft, as a way to isolate its influence on the drag force. The 4 mm diameter shaft was initially embedded at a depth 120 mm and then uplifted at a constant velocity of 5 mm/min. The measured drag force versus displacement response is shown in Fig. 18a. It evidences a shape similar to the one obtained with a plate. However, the maximum drag force is significantly lower. It is about 3.2 N with the shaft only and 18 N with a plate. Also, drag fluctuations did not significantly develop with the shaft only. This confirms that the drag instability is linked to the presence of the plate.

1.2 Stiffness of the loading frame/plate system

A specific test was conducted to quantify the effective stiffness \(k_0\) of the system comprised of the load cell, shaft and plate. This test involves restraining the edges of the plate to a steel frame fixed to the ground, applying an external force on the middle of the plate via the shaft and measuring the displacement P of the loading frame. This displacement includes elastic deformations of the load cell and shaft and the bending deflection of the plate. Results shown in Fig. 18b indicate a linear relationship between force and displacement, which we model as: \(F \approx k_0 P\). This relationship is valid in the range of forces considered in this study, from zero to 20 N. Best fit of the data is obtained for \(k_0 = 2.27 \times 10^5\) N/m.

Fig. 18
figure 18

Testing of the uplift experimental device: a drag force measured with a shaft only and no plate b stiffness test performed by holding the plate’s edges while applying a vertical force in it centre via the shaft

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, T., Rognon, P. Rate-dependent drag instability in granular materials. Granular Matter 22, 72 (2020). https://doi.org/10.1007/s10035-020-01039-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01039-5

Keywords

Navigation