Skip to main content
Log in

Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The rational design of photocatalyst that can effectively reduce CO2 under visible light (λ > 400 nm), and simultaneously precise control of the products syngas (CO/H2) ratio is highly desirable for the Fischer-Tropsch reaction. In this work, we synthesized a series of CeO2-decorated layered double hydroxides (LDHs, Ce-x) samples for photocatalytic CO2 reduction. It was found that the selectivity and productivity of CO and H2 from photoreduction of CO2 in conjunction with Ru-complex as photosensitizer performed an obvious “volcano-like” trend, with the highest point at Ce-0.15 and the CO/H2 ratio can be widely tunable from 1/7.7 to 1/1.3. Furthermore, compared with LDH, Ce-0.15 also drove photocatalytic CO2 to syngas under 600 nm irradiation. It implied that an optimum amount of CeO2 modifying LDH promoted the photoreduction of CO2 to syngas. This report gives the way to fully utilize the rare earth elements and provides a promising route to enhance the photo-response ability and charge injection efficiency of LDH-based photocatalysts in the synthesis of syngas with a tunable ratio under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Li X, Yu J, Jaroniec M, Chen X. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chemical Reviews, 2019, 119(6): 3962–4179

    CAS  PubMed  Google Scholar 

  2. Li X, Sun Y, Xu J, Shao Y, Wu J, Xu X, Pan Y, Ju H, Zhu J, Xie Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nature Energy, 2019, 4 (8): 690–699

    CAS  Google Scholar 

  3. Zhao Y, Waterhouse G I N, Chen G, Xiong X, Wu L Z, Tung C H, Zhang T. Two-dimensional-related catalytic materials for solar-driven conversion of COx into valuable chemical feedstocks. Chemical Society Reviews, 2019, 48(7): 1972–2010

    CAS  PubMed  Google Scholar 

  4. Huang P P, Huang J H, Pantovich S A, Carl A D, Fenton T G, Caputo C A, Grimm R L, Frenkel A I, Li G H. Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. Journal of the American Chemical Society, 2018, 140(47): 16042–16047

    CAS  PubMed  Google Scholar 

  5. Kuriki R, Yamamoto M, Higuchi K, Yamamoto Y, Akatsuka M, Lu D L, Yagi S, Yoshida T, Ishitani O, Maeda K. Robust binding between carbon nitride nanosheets and a binuclear ruthenium(II) complex enabling durable, selective CO2 reduction under visible light in aqueous solution. Angewandte Chemie International Edition, 2017, 56(17): 4867–1871

    CAS  PubMed  Google Scholar 

  6. Kuriki R, Sekizawa K, Ishitani O, Maeda K. Visible-light-driven CO2 reduction with carbon nitride: Enhancing the activity of ruthenium catalysts. Angewandte Chemie International Edition, 2015, 54(8): 2406–2409

    CAS  PubMed  Google Scholar 

  7. Lee J S, Won D I, Jung W J, Son H J, Pac C, Kang S O. Widely controllable syngas production by a dye-sensitized TiO2 hybrid system with Re(I) and Co(III) catalysts under visible-light irradiation. Angewandte Chemie International Edition, 2017, 56 (4): 976–980

    CAS  PubMed  Google Scholar 

  8. Won D I, Lee J S, Ji J M, Jung W J, Son H J, Pac C, Kang S O. Highly robust hybrid photocatalyst for carbon dioxide reduction: Tuning and optimization of catalytic activities of Dye/TiO2/Re(I) organic-inorganic ternary systems. Journal of the American Chemical Society, 2015, 137(42): 13679–13690

    CAS  PubMed  Google Scholar 

  9. Woolerton T W, Sheard S, Reisner E, Pierce E, Ragsdale S W, Armstrong F A. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light. Journal of the American Chemical Society, 2010, 132(7): 2132–2133

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen X, Liu L, Yu P Y, Mao S S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750

    CAS  PubMed  Google Scholar 

  11. Li P, Zhou Y, Zhao Z, Xu Q, Wang X, Xiao M, Zou Z. Hexahedron prism-anchored octahedronal CeO2: Crystal facet-based homojunction promoting efficient solar fuel synthesis. Journal of the American Chemical Society, 2015, 137(30): 9547–9550

    CAS  PubMed  Google Scholar 

  12. Aneggi E, Wiater D, de Leitenburg C, Llorca J, Trovarelli A. Shape-dependent activity of ceria in soot combustion. ACS Catalysis, 2014, 4(1): 172–181

    CAS  Google Scholar 

  13. Tanaka A, Hashimoto K, Kominami H. Preparation of Au/CeO2 exhibiting strong surface plasmon resonance effective for selective or chemoselective oxidation of alcohols to aldehydes or ketones in aqueous suspensions under irradiation by green light. Journal of the American Chemical Society, 2012, 134(35): 14526–14533

    CAS  PubMed  Google Scholar 

  14. Wang J, Xia T, Wang L, Zheng X, Qi Z, Gao C, Zhu J, Li Z, Xu H, Xiong Y. Enabling visible-light-driven selective CO2 reduction by doping quantum dots: Trapping electrons and suppressing H2 evolution. Angewandte Chemie International Edition, 2018, 57(50): 16447–16451

    CAS  PubMed  Google Scholar 

  15. Ulmer U, Dingle T, Duchesne P N, Morris R H, Tavasoli A, Wood T, Ozin G A. Fundamentals and applications of photocatalytic CO2 methanation. Nature Communications, 2019, 10(1): 3169

    PubMed  PubMed Central  Google Scholar 

  16. Bushuyev O S, De Luna P, Dinh C T, Tao L, Saur G, van de Lagemaat J, Kelley S O, Sargent E H. What should we make with CO2 and how can we make it? Joule, 2018, 2(5): 825–832

    CAS  Google Scholar 

  17. Schultz D M, Yoon T P. Solar synthesis: Prospects in visible light photocatalysis. Science, 2014, 343(6174): 1239176

    PubMed  PubMed Central  Google Scholar 

  18. Yu J, Wang Q, O’Hare D, Sun L. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chemical Society Reviews, 2017, 46(19): 5950–5974

    CAS  PubMed  Google Scholar 

  19. Yin H, Tang Z. Ultrathin two-dimensional layered metal hydroxides: An emerging platform for advanced catalysis, energy conversion and storage. Chemical Society Reviews, 2016, 45(18): 4873–4891

    CAS  PubMed  Google Scholar 

  20. Fan G, Li F, Evans D G, Duan X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chemical Society Reviews, 2014, 43(20): 7040–7066

    CAS  PubMed  Google Scholar 

  21. Gao R, Yan D. Layered host-guest long-after glow ultrathin nanosheets: High-efficiency phosphorescence energy transfer at 2D confined interface. Chemical Science (Cambridge), 2017, 8(1): 590–599

    CAS  Google Scholar 

  22. Li T, Hao X, Bai S, Zhao Y, Song Y F. Controllable synthesis and scale-up production prospect of monolayer layered double hydroxide nanosheets. Acta Physico-chimica Sinica, 2020, 36: 1912005 (in Chinese)

    Google Scholar 

  23. Yin Q, Rao D, Zhang G, Zhao Y, Han J, Lin K, Zheng L, Zhang J, Zhou J, Wei M. CoFe-Cl layered double hydroxide: A new cathode material for high-performance chloride ion batteries. Advanced Functional Materials, 2019, 29(36): 1900983

    Google Scholar 

  24. Arif M, Yasin G, Shakeel M, Mushtaq M A, Ye W, Fang X, Ji S, Yan D. Hierarchical CoFe-layered double hydroxide and g-C3N4 heterostructures with enhanced bifunctional photo/electrocatalytic activity towards overall water splitting. Materials Chemistry Frontiers, 2019, 3(3): 520–531

    CAS  Google Scholar 

  25. Kumar S, Durndell L J, Manayil J C, Isaacs M A, Parlett C M A, Karthikeyan S, Douthwaite R E, Coulson B, Wilson K, Lee A F. Delaminated CoAl-layered double hydroxide@TiO2 heterojunction nanocomposites for photocatalytic reduction of CO2. Particle & Particle Systems Characterization, 2018, 35(1): 1700317

    Google Scholar 

  26. Tonda S, Kumar S, Bhardwaj M, Yadav P, Ogale S. g-C3N4/NiAl-LDH 2D/2D hybrid heterojunction for high-performance photocatalytic reduction of CO2 into renewable fuels. ACS Applied Materials & Interfaces, 2018, 10(3): 2667–2678

    CAS  Google Scholar 

  27. Ahmed N, Shibata Y, Taniguchi T, Izumi Y. Photocatalytic conversion of carbon dioxide into methanol using zinc-copper-M (III) (M = aluminum, gallium) layered double hydroxides. Journal of Catalysis, 2011, 279(1): 123–135

    CAS  Google Scholar 

  28. Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T. Photocatalytic conversion of CO2 in water over layered double hydroxides. Angewandte Chemie International Edition, 2012, 51 (32): 8008–8011

    CAS  PubMed  Google Scholar 

  29. Izumi Y. Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coordination Chemistry Reviews, 2013, 257 (1): 171–186

    CAS  Google Scholar 

  30. Arif M, Yasin G, Luo L, Ye W, Mushtaq M A, Fang X, Xiang X, Ji S, Yan D. Hierarchical hollow nanotubes of NiFeV-layered double hydroxides@CoVP heterostructures towards efficient, pH-universal electrocatalytical nitrogen reduction reaction to ammonia. Applied Catalysis B: Environmental, 2020, 265: 118559

    CAS  Google Scholar 

  31. Zhao Y, Jia X, Waterhouse G I N, Wu L Z, Tung C H, O’Hare D, Zhang T. Layered double hydroxide nanostructured photocatalysts for renewable energy production. Advanced Energy Materials, 2016, 6(6): 1501974

    Google Scholar 

  32. Li J, Xu Y, Ding Z, Mahadi A H, Zhao Y, Song Y F. Photocatalytic selective oxidation of benzene to phenol in water over layered double hydroxide: A thermodynamic and kinetic perspective. Chemical Engineering Journal, 2020, 388: 124248

    CAS  Google Scholar 

  33. Wang Q, Feng J, Zheng L, Wang B, Bi R, He Y, Liu H, Li D. Interfacial structure-determined reaction pathway and selectivity for 5-hydroxymethyl furfural hydrogenation over Cu-based catalysts. ACS Catalysis, 2020, 10(2): 1353–1365

    CAS  Google Scholar 

  34. Bai S, Wang Z, Tan L, Waterhouse G I N, Zhao Y, Song Y F. 600 nm irradiation-induced efficient photocatalytic CO2 reduction by ultrathin layered double hydroxide nanosheets. Industrial & Engineering Chemistry Research, 2020, 59(13): 5848–5857

    CAS  Google Scholar 

  35. Silva C G, Bouizi Y, Forne’s V, Garcia H. Layered double hydroxides as highly efficient photocatalysts for visible light oxygen generation from water. Journal of the American Chemical Society, 2009, 131(38): 13833–13839

    Google Scholar 

  36. Ren J, Ouyang S, Xu H, Meng X, Wang T, Wang D, Ye J. Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system. Advanced Energy Materials, 2017, 7(5): 1601657

    Google Scholar 

  37. Wang X, Wang Z, Bai Y, Tan L, Xu Y, Hao X, Wang J, Mahadi A H, Zhao Y, Zheng L, et al. Tuning the selectivity of photoreduction of CO2 to syngas over Pd/layered double hydroxide nanosheets under visible-light up to 600 nm. Journal of Energy Chemistry, 2020, 46: 1–7

    Google Scholar 

  38. Kipkorir P, Tan L, Ren J, Zhao Y, Song Y F. Intercalation effect in NiAl-layered double hydroxide nanosheets for CO2 reduction under visible light. Chemical Research in Chinese Universities, 2020, 36 (1): 127–133

    CAS  Google Scholar 

  39. Tan L, Xu S M, Wang Z, Xu Y, Wang X, Hao X, Bai S, Ning C, Wang Y, Zhang W, et al. Highly selective photoreduction of CO2 with suppressing H2 evolution over monolayer layered double hydroxide under irradiation above 600 nm. Angewandte Chemie International Edition, 2019, 58(34): 11860–11867

    CAS  PubMed  Google Scholar 

  40. Hao X, Tan L, Xu Y, Wang Z, Wang X, Bai S, Ning C, Zhao J, Zhao Y, Song Y F. Engineering active Ni sites in ternary layered double hydroxides nanosheets for a high selectivity photoreduction of CO2 to CH4 under irradiation above 500 nm. Industrial & Engineering Chemistry Research, 2020, 59(7): 3008–3015

    CAS  Google Scholar 

  41. Montini T, Melchionna M, Monai M, Fornasiero P. Fundamentals and catalytic applications of CeO2-based materials. Chemical Reviews, 2016, 116(10): 5987–6041

    CAS  PubMed  Google Scholar 

  42. Li Y, He X, Yin J J, Ma Y, Zhang P, Li J, Ding Y, Zhang J, Zhao Y, Chai Z, Zhang Z. Acquired superoxide-scavenging ability of ceria nanoparticles. Angewandte Chemie International Edition, 2015, 54 (6): 1832–1835

    CAS  PubMed  Google Scholar 

  43. Ye T, Huang W, Zeng L, Li M, Shi J. CeO2 x platelet from monometallic cerium layered double hydroxides and its photocatalytic reduction of CO2. Applied Catalysis B: Environmental, 2017, 210: 141–148

    CAS  Google Scholar 

  44. Zhang S, Chang C, Huang Z, Ma Y, Gao W, Li J, Qu Y. Visible-light-activated Suzuki-Miyaura coupling reactions of aryl chlorides over the multifunctional Pd/Au/porous nanorods of CeO2 catalysts. ACS Catalysis, 2015, 5(11): 6481–6488

    CAS  Google Scholar 

  45. Primo A, Marino T, Corma A, Molinari R, Garcia H. Efficient visible-light photocatalytic water splitting by minute amounts of gold supported on nanoparticulate CeO2 obtained by a biopolymer templating method. Journal of the American Chemical Society, 2011, 133(18): 6930–6933

    CAS  PubMed  Google Scholar 

  46. Seftel E M, Puscasu M C, Mertens M, Cool P, Carja G. Assemblies of nanoparticles of CeO2-ZnTi-LDHs and their derived mixed oxides as novel photocatalytic systems for phenol degradation. Applied Catalysis B: Environmental, 2014, 150–151: 157–166

    Google Scholar 

  47. Valente J S, Tzompantzi F, Prince J. Highly efficient photocatalytic elimination of phenol and chlorinated phenols by CeO2/MgAl layered double hydroxides. Applied Catalysis B: Environmental, 2011, 102(1–2): 276–285

    CAS  Google Scholar 

  48. Iqbal K, Iqbal A, Kirillov A M, Wang B, Liu W, Tang Y. A new Ce-doped MgAl-LDH@Au nanocatalyst for highly efficient reductive degradation of organic contaminants. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2017, 5(14): 6716 6724

    CAS  Google Scholar 

  49. Chen Y, Lv S, Chen C, Qiu C, Fan X, Wang Z. Controllable synthesis of ceria nanoparticles with uniform reactive {100} exposure planes. Journal of Chemical Physics, 2014, 118(8): 4437–4443

    CAS  Google Scholar 

  50. Gao C, Chen S, Wang Y, Wang J, Zheng X, Zhu J, Song L, Zhang W, Xiong Y. Heterogeneous single-atom catalyst for visible-light-driven high-turnover CO2 reduction: The role of electron transfer. Advanced Materials, 2018, 30(13): 1704624

    Google Scholar 

  51. Rao H, Schmidt L C, Bonin J, Robert M. Visible-light-driven methane formation from CO2 with a molecular iron catalyst. Nature, 2017, 548(7665): 74–77

    CAS  PubMed  Google Scholar 

  52. Han B, Ou X, Deng Z, Song Y, Tian C, Deng H, Xu Y J, Lin Z. Nickel metal-organic frameworks monolayers for photoreduction of diluted CO2: Metal-node-dependent activity and selectivity. Angewandte Chemie International Edition, 2018, 57(51): 16811–16815

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant Nos. U1707603, 21878008, 21625101, U1507102, 21922801), Beijing Natural Science Foundation (Nos. 2182047, 2202036) and the Fundamental Research Funds for the Central Universities (Nos. XK1802-6, XK1902, 12060093063, 2312018RC07).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yufei Zhao or Yu-Fei Song.

Electronic Supplementary Material

11705_2020_1947_MOESM1_ESM.pdf

Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, L., Peter, K., Ren, J. et al. Photocatalytic syngas synthesis from CO2 and H2O using ultrafine CeO2-decorated layered double hydroxide nanosheets under visible-light up to 600 nm. Front. Chem. Sci. Eng. 15, 99–108 (2021). https://doi.org/10.1007/s11705-020-1947-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-020-1947-4

Keywords

Navigation