Skip to main content
Log in

Preparation of graphene quantum dots modified hydrogenated carboxylated nitrile rubber interpenetrating cross-linked film

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

In this paper, an amino-rich graphene quantum dots (GQDs) were efficiently prepared. Hydrogenated carboxylated nitrile latex (HXNBR) was prepared by hydrogenation of carboxylated nitrile latex (XNBR) by residual hydrazine hydrate during the preparation of GQDs, and a large amount of amino groups on the GQDs were reacted with carboxyl groups on the XNBR. Hence, a novel-interpenetrating network HXNBR film containing GQDs was successfully prepared. The physical properties and aging resistance of the films were investigated. The composite films have ultraviolet-visible excited fluorescence. By comparing the fluorescence of the films, it was confirmed that HXNBR grafting of GQDs to form an interpenetrating network enables GQDs to be well dispersed in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cao P, Ni Y, Zou R, Zhang L, Yue D (2015) Enhanced catalytic properties of rhodium nanoparticles deposited on chemically modified SiO2 for hydrogenation of nitrile butadiene rubber. RSC Adv 5(5):3417–3424. https://doi.org/10.1039/C4RA11711E

    Article  CAS  Google Scholar 

  2. Wang H, Yang L, Rempel GL (2013) Homogeneous hydrogenation art of nitrile butadiene rubber: a review. Polym Rev 53(2):192–239. https://doi.org/10.1080/15583724.2013.776586

    Article  CAS  Google Scholar 

  3. Zou R, Li C, Zhang L, Yue D (2016) Selective hydrogenation of nitrile butadiene rubber (NBR) with rhodium nanoparticles supported on carbon nanotubes at room temperature. Catal Commun 81:4–9. https://doi.org/10.1016/j.catcom.2016.03.007

    Article  CAS  Google Scholar 

  4. Ziyao C, Hailin X, Chao L et al (2012) Rhodium catalyst for NBR hydrogenation and its recovery method[J]. Rare Metal Mater Eng 41(2):343–347

    Google Scholar 

  5. Schulz G, Comin E, Souza R (2010) Hydrogenation of NBR latex by diimide reduction using selenium catalysts. J Appl Polym Sci 115:1390–1394. https://doi.org/10.1002/app.30818

    Article  CAS  Google Scholar 

  6. Tancharernrat T, Rempel GL, Prasassarakich P (2015) Synthesis of polybutadiene-silica nanoparticles via differential microemulsion polymerization and their hydrogenated nanoparticles by diimide reduction. Polymer Degradation Stab 118:69–81. https://doi.org/10.1016/j.polymdegradstab.2015.04.008

    Article  CAS  Google Scholar 

  7. Wang X, Zhang L, Han Y, Shi S, Wang W, Yue D (2013) New method for hydrogenating NBR latex. J Appl Polymer Sci 127:–4768. https://doi.org/10.1002/app.38009

  8. Lin X, Pan Q, Rempel GL (2005) Gel formation in diimide-hydrogenated polymers. J Appl Polym Sci 96(4):1122–1125. https://doi.org/10.1002/app.21554

    Article  CAS  Google Scholar 

  9. Han Y, Mao L, Meng H, Zhang L, Yue D (2014) Novel Self-Crosslinking Film from Hydrogenated Carboxylated Nitrile Rubber Latex. J Appl Polymer Sci 131. https://doi.org/10.1002/app.39865

  10. Han Y, Su L, Mao L, Zhang L, Yue D (2014) Self-cross-linking hydrogenated nitrile-butadiene rubber latex/polyvinyl chloride emulsion composite film and its properties. Polym-Plast Technol Eng 53(3):306–311. https://doi.org/10.1080/03602559.2013.844245

    Article  CAS  Google Scholar 

  11. Hao F, Su L, Zou R, Yue D (2018) Multi-walled carbon nanotube reinforced self-crosslinking hydrogenated carboxylated nitrile butadiene rubber latex film with improved properties. Plast Rubber Compos 47(2):72–76. https://doi.org/10.1080/14658011.2017.1412864

    Article  CAS  Google Scholar 

  12. Silva Danna C, Osorio Roman I, Dognani G, Constantino C, Agarwal V, Job A (2017) Flexible fluorescent films based on quantum dots (QDs) and natural rubber. J Appl Polym Sci 134. https://doi.org/10.1002/app.45459

  13. Wen S, Zhang X, Hu S, Zhang L, Liu L (2009) Influence of in-situ reaction on luminescent properties of samarium-complex/hydrogenated acrylonitrile-butadiene composites. Polymer 50(14):3269–3274. https://doi.org/10.1016/j.polymer.2009.05.009

    Article  CAS  Google Scholar 

  14. Hu S, Wen S, Wu W, Liu L (2013) Luminescent properties of Eu(OA)3(TTA)/NBR composites prepared by in-situ reaction. J Rare Earths 31(1):1–7. https://doi.org/10.1016/s1002-0721(12)60225-7

    Article  CAS  Google Scholar 

  15. Secco HL, Ferreira FF, Péres LO (2018) Simple preparation of fluorescent composite films based on cerium and europium doped LaF3 nanoparticles. J Solid State Chem 259:43–47. https://doi.org/10.1016/j.jssc.2017.12.026

    Article  CAS  Google Scholar 

  16. Pan D, Jingchun Z, Li Z, Wu M (2010) Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22:734–738. https://doi.org/10.1002/adma.200902825

    Article  CAS  PubMed  Google Scholar 

  17. Zheng X, Ananthanarayanan A, Luo K, Chen P (2014) Glowing Graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636. https://doi.org/10.1002/smll.201402648

    Article  CAS  PubMed  Google Scholar 

  18. Kubo Y, Nishiyabu R (2017) White-light emissive materials based on dynamic polymerization in supramolecular chemistry. Polymer 128:257–275. https://doi.org/10.1016/j.polymer.2016.12.082

    Article  CAS  Google Scholar 

  19. Abdullah Al N, Lee J-E, In I, Lee H, Lee KD, Jeong JH, Park SY (2013) Target delivery and cell imaging using hyaluronic acid-functionalized graphene quantum dots. Mol Pharm 10(10):3736–3744. https://doi.org/10.1021/mp400219u

    Article  CAS  Google Scholar 

  20. Shen J, Zhu Y, Yang X, Zong J, Zhang J, Li C (2012) One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J Chem 36(1):97–101. https://doi.org/10.1039/C1NJ20658C

    Article  CAS  Google Scholar 

  21. Eda G, Lin Y-Y, Mattevi C, Yamaguchi H, Chen H-A, Chen IS, Chen C-W, Chhowalla M (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22(4):505–509. https://doi.org/10.1002/adma.200901996

    Article  CAS  PubMed  Google Scholar 

  22. Ananthanarayanan A, Wang Y, Routh P, Sk MA, Than A, Lin M, Zhang J, Chen J, Sun H, Chen P (2015) Nitrogen and phosphorus co-doped graphene quantum dots: synthesis from adenosine triphosphate, optical properties, and cellular imaging. Nanoscale 7(17):8159–8165. https://doi.org/10.1039/C5NR01519G

    Article  CAS  PubMed  Google Scholar 

  23. Kovalchuk A, Huang K, Xiang C, Martí AA, Tour JM (2015) Luminescent polymer composite films containing coal-derived graphene quantum dots. ACS Appl Mater Interfaces 7(47):26063–26068. https://doi.org/10.1021/acsami.5b06057

    Article  CAS  PubMed  Google Scholar 

  24. Karimi B, Ramezanzadeh B (2017) A comparative study on the effects of ultrathin luminescent graphene oxide quantum dot (GOQD) and graphene oxide (GO) nanosheets on the interfacial interactions and mechanical properties of an epoxy composite. J Colloid Interface Sci 493:62–76. https://doi.org/10.1016/j.jcis.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  25. Gobi N, Vijayakumar D, Keles O, Erogbogbo F (2017) Infusion of graphene quantum dots to create stronger, tougher, and brighter polymer composites. ACS Omega 2(8):4356–4362. https://doi.org/10.1021/acsomega.6b00517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu S, Weng P, Tang Z, Guo B (2016) Sustainable carbon nanodots with tunable radical scavenging activity for elastomers. ACS Sustain Chem Eng 4(1):247–254. https://doi.org/10.1021/acssuschemeng.5b01069

    Article  CAS  Google Scholar 

  27. Safaie B, Youssefi M, Rezaei B (2018) Estimating the interphase properties of polypropylene/carbon quantum dot nanocomposite fibers by micromechanical modeling. Colloid Polym Sci 296:1953–1960. https://doi.org/10.1007/s00396-018-4422-8

    Article  CAS  Google Scholar 

  28. Tan J, Zhang J, Li W, Zhang L, Yue D (2016) Synthesis of amphiphilic carbon quantum dots with phosphorescence properties and their multifunctional applications. J Mater Chem C 4(42):10146–10153. https://doi.org/10.1039/C6TC03027K

    Article  CAS  Google Scholar 

  29. Qu S, Wang X, Lu Q, Liu X, Wang L (2012) A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chem Int Ed Engl 51. https://doi.org/10.1002/anie.201206791

  30. Chen Y, Zheng M, Xiao Y, Dong H, Zhang H, Zhuang J, Hu H, Lei B, Liu Y (2015) A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission. Adv Mater 28. https://doi.org/10.1002/adma.201503380

  31. Sreenath PR, Singh S, Satyanarayana MS, Das P, Dinesh Kumar K (2017) Carbon dot – unique reinforcing filler for polymer with special reference to physico-mechanical properties. Polymer 112:189–200. https://doi.org/10.1016/j.polymer.2017.02.014

    Article  CAS  Google Scholar 

  32. Peng J, Gao W, Gupta BK, Liu Z, Romero-Aburto R, Ge L, Song L, Alemany LB, Zhan X, Gao G, Vithayathil SA, Kaipparettu BA, Marti AA, Hayashi T, Zhu J-J, Ajayan PM (2012) Graphene quantum dots derived from carbon fibers. Nano Lett 12(2):844–849. https://doi.org/10.1021/nl2038979

    Article  CAS  PubMed  Google Scholar 

  33. Wang L, Wang Y, Xu T, Liao H, Yao C, Liu Y, Li Z, Chen Z, Pan D, Sun L, Wu M (2014) Gram-scale synthesis of single-crystalline graphene quantum dots with superior optical properties. Nat Commun 5(1):5357. https://doi.org/10.1038/ncomms6357

    Article  CAS  PubMed  Google Scholar 

  34. Pan D, Guo L, Zhang J, Xi C, Xue Q, Huang H, Li J, Zhang Z, Yu W, Chen Z, Li Z, Wu M (2012) Cutting sp2clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence. J Mater Chem 22(8):3314–3318. https://doi.org/10.1039/C2JM16005F

    Article  CAS  Google Scholar 

  35. Zhang J, Chen Y, Tan J, Sang H, Zhang L, Yue D (2017) The synthesis of rhodium/carbon dots nanoparticles and its hydrogenation application. Appl Surf Sci 396:1138–1145. https://doi.org/10.1016/j.apsusc.2016.11.101

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongmei Yue.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, F., Yang, Z., Xu, E. et al. Preparation of graphene quantum dots modified hydrogenated carboxylated nitrile rubber interpenetrating cross-linked film. Colloid Polym Sci 298, 1361–1368 (2020). https://doi.org/10.1007/s00396-020-04714-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04714-4

Keywords

Navigation