Skip to main content
Log in

Evolutionary computation for solving search-based data analytics problems

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Automatic extracting of knowledge from massive data samples, i.e., big data analytics (BDA), has emerged as a vital task in almost all scientific research fields. The BDA problems are rather difficult to solve due to their large-scale, high-dimensional, and dynamic properties, while the problems with small data are usually hard to handle due to insufficient data samples and incomplete information. Such difficulties lead to the search-based data analytics problem, where a data analysis task is modeled as a complex, dynamic, and computationally expensive optimization problem and then solved by using an iterative algorithm. In this paper, we intend to present an extensive and in-depth discussion on the utilizing of evolutionary computation (EC) based optimization methods [including evolutionary algorithms (EAs) and swarm intelligence (SI)] for solving search-based data analysis problems. Then, as an example for illustration, we provide a comprehensive review of the applications of state-of-the-art EC methods for different types of data mining problems in bioinformatics. Here, the detailed analysis and discussion are conducted on three types of data samples, which include sequences data, network data, and image data. Finally, we survey the challenges faced by EC methods and the trend for future directions. Based on the applications of EC methods for search-based data analysis problems involving inexact and uncertain information, the insights of data analytics are able to understand better, and more efficient algorithms could be designed to solve real-world complex BDA problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACS:

Ant Colony System

BDA:

Big Data Analytics

EA:

Evolutionary Algorithm

EC:

Evolutionary Computation

PSO:

Particle Swarm Optimization

SI:

Swarm Intelligence

USI:

Unified Swarm Intelligence

References

  • Abraham A, Grosan C, Ramos V (eds) (2006) Swarm intelligence in data mining, studies in computational intelligence, vol 34. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  • Amaran S, Sahinidis NV, Sharda B, Bury SJ (2016) Simulation optimization: a review of algorithms and applications. Ann Oper Res 240(1):351–380. https://doi.org/10.1007/s10479-015-2019-x

    Article  MathSciNet  MATH  Google Scholar 

  • Ashlock W, Datta S (2013) Evolved features for DNA sequence classification and their fitness landscapes. IEEE Trans Evol Comput 17(2):185–197

    Article  Google Scholar 

  • Baldi P, Brunak S (2001) Bioinformatics: the machine learning approach, 2nd edn. Adaptive computation and machine learning series. The MIT Press, Cambridge

    MATH  Google Scholar 

  • Beyer HG, Schwefel HP (2002) Evolution strategies—a comprehensive introduction. Nat Comput 1(1):3–52

    Article  MathSciNet  MATH  Google Scholar 

  • Bhandarkar SM, Zhang H (1999) Image segmentation using evolutionary computation. IEEE Trans Evol Comput 3(1):1–21. https://doi.org/10.1109/4235.752917

    Article  Google Scholar 

  • Bhattacharya M, Islam R, Abawajy J (2016) Evolutionary optimization: a big data perspective. J Netw Comput Appl 59:416–426. https://doi.org/10.1016/j.jnca.2014.07.032

    Article  Google Scholar 

  • Bi C (2008) Evolutionary metropolis sampling in sequence alignment space. In: Proceedings of the 2008 IEEE congress on evolutionary computation (CEC 2008), pp 189–194. https://doi.org/10.1109/CEC.2008.4630797

  • Bi C (2009) A Monte Carlo EM algorithm for De Novo motif discovery in biomolecular sequences. IEEE/ACM Trans Comput Biol Bioinf 6(3):370–386. https://doi.org/10.1109/TCBB.2008.103

    Article  MathSciNet  Google Scholar 

  • Bidar M, Mouhoub M (2019) Constraint solving and optimization using evolutionary techniques. In: Proceedings of the twenty-eighth international joint conference on artificial intelligence (IJCAI-19), pp 6424–6425. https://doi.org/10.24963/ijcai.2019/901

  • Bierlaire M (2015) Simulation and optimization: a short review. Transp Res Part C Emerg Technol 55:4–13. https://doi.org/10.1016/j.trc.2015.01.004

    Article  Google Scholar 

  • Blagus R, Lusa L (2013) SMOTE for high-dimensional class-imbalanced data. BMC Bioinform 14:1–16. https://doi.org/10.1186/1471-2105-14-106

    Article  Google Scholar 

  • Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A (2015) Recent advances and emerging challenges of feature selection in the context of big data. Knowl-Based Syst 86:33–45. https://doi.org/10.1016/j.knosys.2015.05.014

    Article  Google Scholar 

  • Bosman PAN, Thierens D (2003) The balance between proximity and diversity in multi-objective evolutionary algorithms. IEEE Trans Evol Comput 7(2):174–188

    Article  Google Scholar 

  • Brockhoff D, Zitzler E (2009) Objective reduction in evolutionary multi-objective optimization: theory and applications. Evol Comput 17(2):135–166

    Article  Google Scholar 

  • Bui LT, Michalewicz Z, Parkinson E, Abello MB (2012) Adaptation in dynamic environments: a case study in mission planning. IEEE Trans Evol Comput 16(2):190–209

    Article  Google Scholar 

  • Cannataro M (2018) Big data analysis in bioinformatics. Springer International Publishing, Cham, pp 1–19. https://doi.org/10.1007/978-3-319-63962-8_139-1

    Book  Google Scholar 

  • Carrasco J, García S, Rueda MM, Das S, Herrera F (2020) Recent trends in the use of statistical tests for comparing swarm and evolutionary computing algorithms: practical guidelines and a critical review. Swarm Evol Comput 54:100,665. https://doi.org/10.1016/j.swevo.2020.100665

  • Chai T, Jin Y, Sendhoff B (2013) Evolutionary complex engineering optimization: opportunities and challenges. IEEE Comput Intell Mag 8(3):12–15

    Article  Google Scholar 

  • Chan TM, Leung KS, Lee KH (2012) Memetic algorithms for De Novo motif discovery. IEEE Trans Evol Comput 16(5):730–748

    Article  Google Scholar 

  • Chen R, Li K, Yao X (2018) Dynamic multi-objectives optimization with a changing number of objectives. IEEE Trans Evol Comput 22(1):157–171. https://doi.org/10.1109/TEVC.2017.2669638

    Article  Google Scholar 

  • Chen T, Tang K, Chen G, Yao X (2010) Analysis of computational time of simple estimation of distribution algorithms. IEEE Trans Evol Comput 14(1):1–22. https://doi.org/10.1109/TEVC.2009.2040019

    Article  Google Scholar 

  • Chen XW, Gao JX (2016) Big data bioinformatics. Methods 111:1–2. https://doi.org/10.1016/j.ymeth.2016.11.017

    Article  Google Scholar 

  • Cheng R, Li M, Yao X (2017) Parallel peaks: a visualization method for benchmark studies of multimodal optimization. In: 2017 IEEE congress on evolutionary computation (CEC), pp 263–270. https://doi.org/10.1109/CEC.2017.7969322

  • Cheng S, Liu B, Shi Y, Jin Y, Li B (2016) Evolutionary computation and big data: key challenges and future directions. In: Tan Y, Shi Y (eds) Data mining and big data, Lecture Notes in Computer Science, vol 9714, pp 3–14. Springer International Publishing Switzerland

  • Cheng S, Liu B, Ting TO, Qin Q, Shi Y, Huang K (2016b) Survey on data science with population-based algorithms. Big Data Anal 1:1–20. https://doi.org/10.1186/s41044-016-0003-3

    Article  Google Scholar 

  • Cheng S, Lu H, Guo Yn, Lei X, Liang J, Chen J, Shi Y (2019) Dynamic multimodal optimization: a preliminary study. In: Proceedings of 2019 IEEE congress on evolutionary computation (CEC 2019). IEEE, pp 279–285. https://doi.org/10.1109/CEC.2019.8790078

  • Cheng S, Lu H, Song W, Chen J, Shi Y (2018) Dynamic multimodal optimization using brain storm optimization algorithms. In: Bio-inspired computing: theories and applications, pp 236–245. Springer Singapore, Singapore. https://doi.org/10.1007/978-981-13-2826-8_21

  • Cheng S, Shi Y (2019) Brain storm optimization algorithms: concepts, principles and applications, adaptation, learning, and optimization, vol 23. Springer International Publishing AG. https://doi.org/10.1007/978-3-030-15070-9

  • Cheng S, Shi Y, Qin Q, Gao S (2013) Solution clustering analysis in brain storm optimization algorithm. In: Proceedings of the 2013 IEEE symposium on swarm intelligence (SIS 2013). IEEE, Singapore, pp 111–118

  • Cheng S, Zhang Q, Qin Q (2016c) Big data analytics with swarm intelligence. Ind Manag Data Syst 116(4):646–666. https://doi.org/10.1108/IMDS-06-2015-0222

    Article  Google Scholar 

  • Chetty M, Ngom A, Marchiori E (2010) Editorial: computational intelligence in bioinformatics. Neurocomputing 73:2291–2292

    Article  Google Scholar 

  • Cios KJ, Mamitsuka H, Nagashima T, Tadeusiewicz R (2005) Guest editorial: computational intelligence in solving bioinformatics problems. Artif Intell Med 35:1–8

    Article  Google Scholar 

  • Coello Coello CA, Lamont GB, Van Veldhuizen DA (2007) Evolutionary algorithms for solving multi-objective problems, 2nd edn. Genetic and Evolutionary Computation Series. Springer

  • Coello Coello CA, Dehuri S, Ghosh S (eds) (2009) Swarm intelligence for multi-objective problems in data mining, vol 242. Studies in Computational Intelligence. Springer, Berlin/Heidelberg

    MATH  Google Scholar 

  • Cohen J (2004) Bioinformatics—an introduction for computer scientists. ACM Comput Surv 36(2):122–158

    Article  Google Scholar 

  • Cohen J (2005) Computer science and bioinformatics. Commun ACM 48(3):72–78

    Article  Google Scholar 

  • Cohen SCM, de Castro LN (2006) Data clustering with particle swarms. In: Proceedings of the 2006 IEEE congress on evolutionary computations (CEC 2006), pp 1792–1798

  • Correa ES, Freitas AA, Johnson CG (2006) A new discrete particle swarm algorithm applied to attribute selection in a bioinformatics data set. In: Genetic and evolutionary computation conference (GECCO 2006) (pp 35–42). ACM, Seattle, Washington, USA

  • Coutinho F, Ogasawara E, de Oliveira D, Braganholo V, Lima AAB, Dávila AMR, Mattoso M (2016) Data parallelism in bioinformatics workflows using hydra. In: The ACM international symposium on high performance distributed computing (HPDC 2010) (pp 507–515). ACM, Chicago, Illinois, USA

  • Crawford VG (2019) An efficient evolutionary algorithm for minimum cost submodular cover. In: Proceedings of the twenty-eighth international joint conference on artificial intelligence (IJCAI–19), pp 1227–1233. International Joint Conferences on Artificial Intelligence Organization. https://doi.org/10.24963/ijcai.2019/171

  • Cuevas E, Zaldívar D, Perez-Cisneros M (2016) Applications of evolutionary computation in image processing and pattern recognition, vol 100. Intelligent Systems Reference Library. Springer International Publishing, Cham

    Book  MATH  Google Scholar 

  • Damas S, Cordón O, Santamaría J (2011) Medical image registration using evolutionary computation: an experimental survey. IEEE Comput Intell Mag 6(4):26–42. https://doi.org/10.1109/MCI.2011.942582

    Article  Google Scholar 

  • Darwish A, Hassanien AE, Das S (2020) A survey of swarm and evolutionary computing approaches for deep learning. Artif Intell Rev 53:1767–1812. https://doi.org/10.1007/s10462-019-09719-2

    Article  Google Scholar 

  • Das AK, Das S, Ghosh A (2017) Ensemble feature selection using bi-objective genetic algorithm. Knowl-Based Syst 123:116–127. https://doi.org/10.1016/j.knosys.2017.02.013

    Article  Google Scholar 

  • De Bufala N, Kant JD (2019) An evolutionary approach to find optimal policies with an agent-based simulation. In: Proceedings of the 18th international conference on autonomous agents and multiagent systems (AAMAS 2019), pp 610–618. https://doi.org/10.5555/3306127.3331747

  • Del Ser J, Osaba E, Molina D, Yang XS, Salcedo-Sanz S, Camacho D, Das S, Suganthan PN, Coello Coello CA, Herrera F (2019) Bio-inspired computation: Where we stand and what’s next. Swarm Evol Comput 48:220–250. https://doi.org/10.1016/j.swevo.2019.04.008

    Article  Google Scholar 

  • D’haeseleer P (2006) What are DNA sequence motifs? Nat Biotechnol 24(4):423–425. https://doi.org/10.1038/nbt0406-423

    Article  Google Scholar 

  • Dhar V (2013) Data science and prediction. Commun ACM 56(12):64–73

    Article  Google Scholar 

  • Ding J, Yang C, Jin Y, Chai T (2019) Generalized multitasking for evolutionary optimization of expensive problems. IEEE Trans Evol Comput 23(1):44–58. https://doi.org/10.1109/TEVC.2017.2785351

    Article  Google Scholar 

  • Domingos P (2012) A few useful things to know about machine learning. Commun ACM 55(10):78–87

    Article  Google Scholar 

  • Donoho DL (2000) Aide-Memoire. High-dimensional data analysis: the curses and blessings of dimensionality. Tech. rep., Stanford University

  • Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans Evol Comput 1(1):53–66

    Article  Google Scholar 

  • Dorigo M, Stützle T (2004) Ant colony optimization. MIT Press, Cambridge

    Book  MATH  Google Scholar 

  • Du Y, Wang T, Xin B, Wang L, Chen Y, Xing L (2019) A data-driven parallel scheduling approach for multiple agile earth observation satellites. IEEE Trans Evol Comput p. in press. https://doi.org/10.1109/TEVC.2019.2934148

  • Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17(3):37–54

    Google Scholar 

  • Feng L, Gupta A, Ong YS (2019) Compressed representation for higher-level meme space evolution: a case study on big knapsack problems. Memetic Comput 11(1):3–17. https://doi.org/10.1007/s12293-017-0244-3

    Article  Google Scholar 

  • Fernández A, del Río S, Chawla NV, Herrera F (2017) An insight into imbalanced big data classification: outcomes and challenges. Complex Intell Syst 3(2):105–120. https://doi.org/10.1007/s40747-017-0037-9

    Article  Google Scholar 

  • Ficici SG (2005) Monotonic solution concepts in coevolution. In: Genetic and evolutionary computation conference (GECCO 2005), pp 499–506

  • Fogel GB, Corne DW (2003) Editorial: computational intelligence in bioinformatics. BioSystems 72:1–4

    Article  Google Scholar 

  • Fogel GB, Corne DW (2003) Evolutionary computation in bioinformatics. Morgan Kaufmann Publishers, San Francisco

    Google Scholar 

  • Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New York

    MATH  Google Scholar 

  • Friedrich T, Oliveto PS, Sudholt D, Witt C (2009) Analysis of diversity-preserving mechanisms for global exploration. Evol Comput 17(4):455–476. https://doi.org/10.1162/evco.2009.17.4.17401

    Article  Google Scholar 

  • Garbelini JC, Kashiwabara AY, Sanches DS (2016) Discovery motifs by evolutionary computation. In: Genetic and evolutionary computation conference (GECCO 2016 Companion) (pp 1463–1464). ACM, Denver, Colorado, USA

  • García S, Herrera F (2009) Evolutionary under sampling for classification with imbalanced datasets: Proposals and taxonomy. Evol Comput 17(3):275–306. https://doi.org/10.1162/evco.2009.17.3.275

    Article  MathSciNet  Google Scholar 

  • Ge H, Zhao M, Sun L, Wang Z, Tan G, Zhang Q, Chen CLP (2019) A many-objective evolutionary algorithm with two interacting processes: Cascade clustering and reference point incremental learning. IEEE Trans Evol Comput 23(4):572–586. https://doi.org/10.1109/TEVC.2018.2874465

    Article  Google Scholar 

  • Gibbs MS, Maier HR, Dandy GC (2011) Relationship between problem characteristics and the optimal number of genetic algorithm generations. Eng Optim 43(4):349–376. https://doi.org/10.1080/0305215x.2010.491547

    Article  Google Scholar 

  • González-Álvarez DL, Vega-Rodríguez MA, Rubio-Largo A (2015) Multi-objective optimization algorithms for motif discovery in DNA sequences. Genet Program Evolvable Mach 16(2):167–209

    Article  Google Scholar 

  • Hallen MA, Donald BR (2019) Protein design by provable algorithms. Commun ACM 62(10):76–84. https://doi.org/10.1145/3338124

    Article  Google Scholar 

  • Handl J, Kell DB, Knowles J (2007) Multi-objective optimization in bioinformatics and computational biology. IEEE/ACM Trans Comput Biol Bioinf 4(2):279–292

    Article  Google Scholar 

  • Hassanien AE, Al-Shammari ET, Ghali NI (2013) Computational intelligence techniques in bioinformatics. Comput Biol Chem 47:37–47

    Article  Google Scholar 

  • Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining, inference, and prediction, 2nd edn. Springer Series in Statistics. Springer

  • Hauschild M, Pelikan M (2011) An introduction and survey of estimation of distribution algorithms. Swarm Evol Comput 1(3):111–128

    Article  Google Scholar 

  • He H, Garcia EA (2009) Learning from imbalanced data. IEEE Trans Knowl Data Eng 21(9):1263–1284. https://doi.org/10.1109/TKDE.2008.239

    Article  Google Scholar 

  • Holland JH (1975) Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. The MIT Press, Cambridge

    MATH  Google Scholar 

  • Hu X, Pan Y (2007) Knowledge discovery in bioinformatics: techniques, methods, and applications. Wiley, Hoboken

    Book  Google Scholar 

  • Iqbal M, Xue B, Al-Sahaf H, Zhang M (2017) Cross-domain reuse of extracted knowledge in genetic programming for image classification. IEEE Trans Evol Comput 21(4):569–587. https://doi.org/10.1109/TEVC.2017.2657556

    Article  Google Scholar 

  • Irfan S, Babu BV (2016) Information retrieval in big data using evolutionary computation: a survey. In: 2016 International conference on computing, communication and automation (ICCCA), pp 208–213. https://doi.org/10.1109/CCAA.2016.7813720

  • Ishibuchi H, Peng Y, Shang K (2019) A scalable multi-modal multi-objective test problem. In: 2019 IEEE congress on evolutionary computation (CEC), pp 310–317. https://doi.org/10.1109/CEC.2019.8789971

  • Ishibuchi H, Tsukamoto N, Nojima Y (2008) Evolutionary many-objective optimization: a short review. In: 2008 IEEE congress on evolutionary computation (IEEE world congress on computational intelligence), pp 2419–2426. https://doi.org/10.1109/CEC.2008.4631121

  • Jiang S, Yang S (2017) Evolutionary dynamic multi-objective optimization: benchmarks and algorithm comparisons. IEEE Trans Cybern 47(1):198–211. https://doi.org/10.1109/TCYB.2015.2510698

    Article  Google Scholar 

  • Jin Y (2016) Data driven evolutionary optimization of complex systems: big data versus small data. In: Proceedings of the 2016 on genetic and evolutionary computation conference companion. ACM, pp 1281–1282. https://doi.org/10.1145/2908961.2931715

  • Jin Y, Branke J (2005) Evolutionary optimization in uncertain environments—a survey. IEEE Trans Evol Comput 9(3):303–317

    Article  Google Scholar 

  • Jin Y, Hammer B (2014) Computational intelligence in big data. IEEE Comput Intell Mag 9(3):12–13

    Article  Google Scholar 

  • Jin Y, Sendhoff B (2009) A systems approach to evolutionary multi-objective structural optimization and beyond. IEEE Comput Intell Mag 4(3):62–76

    Article  Google Scholar 

  • Jin Y, Wang H, Chugh T, Guo D, Miettinen K (2019) Data-driven evolutionary optimization: an overview and case studies. IEEE Trans Evol Comput 23(3):442–458. https://doi.org/10.1109/TEVC.2018.2869001

    Article  Google Scholar 

  • Juan AA, Faulin J, Grasman SE, Rabe M, Figueira G (2015) A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems. Oper Res Perspect 2:62–72. https://doi.org/10.1016/j.orp.2015.03.001

    Article  MathSciNet  Google Scholar 

  • Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of IEEE international conference on neural networks (ICNN 1995), pp 1942–1948

  • Kennedy J, Eberhart R, Shi Y (2001) Swarm intelligence. Morgan Kaufmann Publisher, San Francisco

    Google Scholar 

  • Kim YS (2011) Multi-objective clustering with data- and human-driven metrics. J Comput Inf Syst 51(4):64–73

    Google Scholar 

  • Köppen M, Franke K, Vicente-Garcia R (2006) Tiny GAs for image processing applications. IEEE Comput Intell Mag 1(2):17–26. https://doi.org/10.1109/MCI.2006.1626491

    Article  Google Scholar 

  • Koza JR (1992) Genetic programming: on the programming of computers by means of natural selection. A Bradford Book

  • Kulkarni RV, Venayagamoorthy GK (2011) Particle swarm optimization in wireless-sensor networks: a brief survey. IEEE Trans Syst Man Cybern Part C Appl Rev 41(2):262–267

    Article  Google Scholar 

  • LaTorre A, Muelas S, Peña JM (2015) A comprehensive comparison of large scale global optimizers. Inf Sci 316:517–549. https://doi.org/10.1016/j.ins.2014.09.031

    Article  Google Scholar 

  • Lei X, Tian J, Ge L, Zhang A (2013) The clustering model and algorithm of PPI network based on propagating mechanism of artificial bee colony. Inf Sci 247:21–39

    Article  MathSciNet  Google Scholar 

  • Lei X, Wang F, Wu FX, Zhang A, Pedrycz W (2016) Protein complex identification through Markov clustering with firefly algorithm on dynamic protein–protein interaction networks. Inf Sci 329:303–316

    Article  Google Scholar 

  • Lei X, Wu FX, Tian J, Zhao J (2014) ABC and IFC: modules detection method for PPI network. BioMed Res Int 2014:1–11. https://doi.org/10.1155/2014/968173

    Article  Google Scholar 

  • Lei X, Yang X, Fujita H (2019) Random walk based method to identify essential proteins by integrating network topology and biological characteristics. Knowl-Based Syst 167:53–67. https://doi.org/10.1016/j.knosys.2019.01.012

    Article  Google Scholar 

  • Li DC, Liu CW (2012) Extending attribute information for small data set classification. IEEE Trans Knowl Data Eng 24(3):452–464. https://doi.org/10.1109/TKDE.2010.254

    Article  Google Scholar 

  • Li S, Kang L, Zhao XM (2014) A survey on evolutionary algorithm based hybrid intelligence in bioinformatics. BioMed Res Int 2014:1–8. https://doi.org/10.1155/2014/362738

    Article  Google Scholar 

  • Lihu A, Holban S (2015) De novo motif prediction using the fireworks algorithm. Int J Swarm Intell Res (IJSIR) 6(3):24–40

    Article  Google Scholar 

  • Liu Y, Ishibuchi H, Yen GG, Nojima Y, Masuyama N (2020) Handling imbalance between convergence and diversity in the decision space in evolutionary multi-modal multi-objective optimization. IEEE Trans Evol Comput 24(3):551–565. https://doi.org/10.1109/TEVC.2019.2938557

    Article  Google Scholar 

  • Lones MA, Tyrrell AM (2005) The evolutionary computation approach to motif discovery in biological sequences. In: Genetic and evolutionary computation conference (GECCO 2005) (pp 1–11). ACM, Washington, DC, USA

  • Lu J, Li D (2013) Bias correction in a small sample from big data. IEEE Trans Knowl Data Eng 25(11):2658–2663. https://doi.org/10.1109/TKDE.2012.220

    Article  Google Scholar 

  • Lu Y, Wang S, Li S, Zhou C (2011) Particle swarm optimizer for variable weighting in clustering high-dimensional data. Mach Learn 82(1):43–70

    Article  MathSciNet  Google Scholar 

  • Lucidi S, Maurici M, Paulon L, Rinaldi F, Roma M (2016) A simulation-based multi-objective optimization approach for health care service management. IEEE Trans Autom Sci Eng 13(4):1480–1491. https://doi.org/10.1109/TASE.2016.2574950

    Article  MATH  Google Scholar 

  • Luo W, Yi R, Yang B, Xu P (2019) Surrogate-assisted evolutionary framework for data-driven dynamic optimization. IEEE Trans Emerg Top Comput Intell 3(2):137–150. https://doi.org/10.1109/TETCI.2018.2872029

    Article  Google Scholar 

  • Manyika J, Chui M, Brown B, Bughin J, Dobbs R, Roxburgh C, Byers AH (2011) Big data: the next frontier for innovation, competition, and productivity. Tech. rep., McKinsey Global Institute

  • Martens D, Baesens B, Fawcett T (2011) Editorial survey: swarm intelligence for data mining. Mach Learn 82(1):1–42

    Article  MathSciNet  Google Scholar 

  • Michalewicz Z (2012) Ubiquity symposium: evolutionary computation and the processes of life: the emperor is naked: evolutionary algorithms for real-world applications. Ubiquity 2012:3:1–3:13

    Article  Google Scholar 

  • Morrison RW, De Jong KA (1999) A test problem generator for non-stationary environments. In: Proceedings of the 1999 congress on evolutionary computation (CEC 1999), vol 3, pp 2047–2053

  • Muñoz MA, Sun Y, Kirley M, Halgamuge SK (2015) Algorithm selection for black-box continuous optimization problems: a survey on methods and challenges. Inf Sci 317:224–245. https://doi.org/10.1016/j.ins.2015.05.010

    Article  Google Scholar 

  • Pal SK, Talwar V, Mitra P (2002) Web mining in soft computing framework: relevance, state of the art and future directions. IEEE Trans Neural Netw 13(5):1163–1177

    Article  Google Scholar 

  • Pan L, He C, Tian Y, Wang H, Zhang X, Jin Y (2019) A classification-based surrogate-assisted evolutionary algorithm for expensive many-objective optimization. IEEE Trans Evol Comput 23(1):74–88. https://doi.org/10.1109/TEVC.2018.2802784

    Article  Google Scholar 

  • Pati SK, Das AK, Ghosh A (2013) Gene selection using multi-objective genetic algorithm integrating cellular automata and rough set theory. In: Panigrahi BK, Suganthan PN, Das S, Dash SS (eds) Swarm, evolutionary, and memetic computing. Springer International Publishing, Cham, pp 144–155. https://doi.org/10.1007/978-3-319-03756-1_13

  • Pelikan M, Goldberg DE, Lobo FG (2002) A survey of optimization by building and using probabilistic models. Comput Optim Appl 21(1):5–20

    Article  MathSciNet  MATH  Google Scholar 

  • Pitiot A, Toga AW, Thompson PM (2002) Adaptive elastic segmentation of brain mri via shape-model-guided evolutionary programming. IEEE Trans Med Imaging 21(8):910–923. https://doi.org/10.1109/TMI.2002.803124

    Article  Google Scholar 

  • Rajaraman A, Leskovec J, Ullman JD (2012) Mining of massive datasets. Cambridge University Press, Cambridge

    Google Scholar 

  • Rice JR (1976) The algorithm selection problem. Adv Comput 15:65–118. https://doi.org/10.1016/S0065-2458(08)60520-3

    Article  Google Scholar 

  • Riley P (2019) Three pitfalls to avoid in machine learning. Nature 572:27–29. https://doi.org/10.1038/d41586-019-02307-y

    Article  Google Scholar 

  • Saadatmand-Tarzjan M, Moghaddam HA (2007) A novel evolutionary approach for optimizing content-based image indexing algorithms. IEEE Trans Syst Man Cybern Part B (Cybern) 37(1):139–153. https://doi.org/10.1109/TSMCB.2006.880137

    Article  Google Scholar 

  • Saha B, Srivastava D (2014) Data quality: the other face of big data. In: 2014 IEEE 30th international conference on data engineering, pp 1294–1297. https://doi.org/10.1109/ICDE.2014.6816764

  • Santander-Jiménez S, Vega-Rodríguez MA (2019) Comparative analysis of intra-algorithm parallel multi-objective evolutionary algorithms: Taxonomy implications on bioinformatics scenarios. IEEE Trans Parallel Distrib Syst 30(1):63–78. https://doi.org/10.1109/TPDS.2018.2854788

    Article  Google Scholar 

  • Sheikhpour R, Sarram MA, Gharaghani S, Chahooki MAZ (2017) A survey on semi-supervised feature selection methods. Pattern Recogn 64:141–158. https://doi.org/10.1016/j.patcog.2016.11.003

    Article  MATH  Google Scholar 

  • Sheppard JW, Salzberg SL (1997) A teaching strategy for memory-based control. Artif Intell Rev 11(1–5):343–370

    Article  Google Scholar 

  • Shi Y (2011) An optimization algorithm based on brainstorming process. Int J Swarm Intell Res (IJSIR) 2(4):35–62

    Article  Google Scholar 

  • Shi Y (2018) Unified swarm intelligence algorithms. In: Shi Y (ed) Critical developments and applications of swarm intelligence. IGI Global, pp 1–26

  • Shin SY, Lee IH, Kim D, Zhang BT (2005) Evolved features for DNA sequence classification and their fitness landscapes. IEEE Trans Evol Comput 9(2):143–158

    Article  Google Scholar 

  • Slowik A, Kwasnicka H (2018) Nature inspired methods and their industry applications—swarm intelligence algorithms. IEEE Trans Ind Inf 14(3):1004–1015. https://doi.org/10.1109/TII.2017.2786782

    Article  Google Scholar 

  • Smith SL, Cagnoni S (2010) Genetic and evolutionary computation: medical applications. Wiley, New York

    Book  Google Scholar 

  • Sörensen K (2015) Metaheuristics–the metaphor exposed. Int Trans Oper Res 22(1):3–18

    Article  MathSciNet  MATH  Google Scholar 

  • Strömbäck L, Freire J (2011) XML management for bioinformatics applications. Comput Sci Eng 13:12–21

    Article  Google Scholar 

  • Sun C, Wang H, Du W, Jin Y (2019) Guest editorial: special issue on computational intelligence in data-driven optimization. IEEE Trans Emerg Top Comput Intell 3(2):90–92. https://doi.org/10.1109/TETCI.2019.2902893

    Article  Google Scholar 

  • Sung WK (2012) Bioinformatics applications in genomics. IEEE Comput 45(6):57–63. https://doi.org/10.1109/MC.2012.151

    Article  Google Scholar 

  • Tan KC, Goh CK (2008) Handling uncertainties in evolutionary multi-objective optimization. In: Zurada JM, Yen GG, Wang J (eds) Computational intelligence: research frontiers. Springer, Berlin, pp 262–292. https://doi.org/10.1007/978-3-540-68860-0_13

  • Tang K, Peng F, Chen G, Yao X (2014) Population-based algorithm portfolios with automated constituent algorithms selection. Inf Sci 279:94–104. https://doi.org/10.1016/j.ins.2014.03.105

    Article  Google Scholar 

  • Thomas M, Daemen A, De Moor B (2014) Maximum likelihood estimation of GEVD: applications in bioinformatics. IEEE/ACM Trans Comput Biol Bioinf 11(4):673–680

    Article  Google Scholar 

  • Torres A, Nieto JJ (2006) Fuzzy logic in medicine and bioinformatics. J Biomed Biotechnol 2006:1–7. https://doi.org/10.1155/JBB/2006/91908

    Article  Google Scholar 

  • Valentini G, Tagliaferri R, Masulli F (2009) Guest editorial: computational intelligence and machine learning in bioinformatics. Artif Intell Med 45:91–96

    Article  Google Scholar 

  • Verleysen M (2003) Learning high-dimensional data. In: Ablameyko S, Gori M, Goras L, Piuri V (eds) Limitations and future trends in neural computation, NATO Science Series, III: Computer and Systems Sciences, vol 186. IOS Press, pp 141–162

  • Vlahogianni EI (2015) Optimization of traffic forecasting: intelligent surrogate modeling. Transp Res Part C Emerg Technol 55:14–23. https://doi.org/10.1016/j.trc.2015.03.016

    Article  Google Scholar 

  • Wachowiak MP, Smolíková R, Zheng Y, Zurada JM, Elmaghraby AS (2004) An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Trans Evol Comput 8(3):289–301. https://doi.org/10.1109/TEVC.2004.826068

    Article  Google Scholar 

  • Wang L, Wang Y, Chang Q (2016) Feature selection methods for big data bioinformatics: a survey from the search perspective. Methods 111:21–31. https://doi.org/10.1016/j.ymeth.2016.08.014

    Article  Google Scholar 

  • Wang Y, Yuan NJ, Sun Y, Qin C, Xie X (2017) App download forecasting: an evolutionary hierarchical competition approach. In: Proceedings of the twenty-sixth international joint conference on artificial intelligence (IJCAI-17), pp 2978–2984. https://doi.org/10.24963/ijcai.2017/415

  • Xia XG (2017) Small data, mid data, and big data versus algebra, analysis, and topology. IEEE Signal Process Mag 34(1):48–51. https://doi.org/10.1109/MSP.2016.2607319

    Article  Google Scholar 

  • Xu J, Huang E, Chen CH, Lee LH (2015) Simulation optimization: A review and exploration in the new era of cloud computing and big data. Asia-Pac J Oper Res 32(3):1–34. https://doi.org/10.1142/S0217595915500190

    Article  MathSciNet  MATH  Google Scholar 

  • Xu W, Xu JX, He D, Tan KC (2019) An evolutionary constraint-handling technique for parametric optimization of a cancer immunotherapy model. IEEE Trans Emerg Top Comput Intell 3(2):151–162. https://doi.org/10.1109/TETCI.2018.2880516

    Article  Google Scholar 

  • Yang S, Li C (2010) A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans Evol Comput 14(6):959–974

    Article  Google Scholar 

  • Yang Z, Tang K, Yao X (2007) Differential evolution for high-dimensional function optimization. In: Proceedings of 2007 IEEE congress on evolutionary computation (CEC 2007). IEEE, pp 35,231–3530

  • Yang Z, Tang K, Yao X (2011) Scalability of generalized adaptive differential evolution for large-scale continuous optimization. Soft Comput 15(11):2141–2155

    Article  Google Scholar 

  • Yue C, Qu B, Liang J (2018) A multi-objective particle swarm optimizer using ring topology for solving multi-modal multi-objective problems. IEEE Trans Evol Comput 22(5):805–817. https://doi.org/10.1109/TEVC.2017.2754271

    Article  Google Scholar 

  • Zhang Q, Mhlenbein H (2004) On the convergence of a class of estimation of distribution algorithms. IEEE Trans Evol Comput 8(2):127–136. https://doi.org/10.1109/TEVC.2003.820663

    Article  Google Scholar 

  • Zhang Y, Gong Dw, Cheng J (2017) Multi-objective particle swarm optimization approach for cost-based feature selection in classification. IEEE/ACM Trans Comput Biol Bioinf 14(1):64–75. https://doi.org/10.1109/TCBB.2015.2476796

    Article  Google Scholar 

  • Zhang Y, Gong Dw, Sun Jy, Qu By (2018) A decomposition-based archiving approach for multi-objective evolutionary optimization. Inf Sci 430–431:397–413. https://doi.org/10.1016/j.ins.2017.11.052

    Article  Google Scholar 

  • Zhen L, Li M, Peng D, Yao X (2020) Objective reduction for visualising many-objective solution sets. Inf Sci 512:278–294. https://doi.org/10.1016/j.ins.2019.04.014

    Article  MathSciNet  Google Scholar 

  • Zhou ZH, Chawla NV, Jin Y, Williams GJ (2014) Big data opportunities and challenges: discussions from data analytics perspectives. IEEE Comput Intell Mag 9(4):62–74

    Article  Google Scholar 

  • Zhu Z, Zhou J, Ji Z, Shi Y (2011) DNA sequence compression using adaptive particle swarm optimization-based memetic algorithm. IEEE Trans Evol Comput 15(5):643–658

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61806119, 61672334, 61761136008, and 61773103), Natural Science Basic Research Plan In Shaanxi Province of China (Grant No. 2019JM-320), and the Fundamental Research Funds for the Central Universities under Grant GK202003078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianbo Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, S., Ma, L., Lu, H. et al. Evolutionary computation for solving search-based data analytics problems. Artif Intell Rev 54, 1321–1348 (2021). https://doi.org/10.1007/s10462-020-09882-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-020-09882-x

Keywords

Navigation