Skip to main content
Log in

Rigorous Derivation of a Linear Sixth-Order Thin-Film Equation as a Reduced Model for Thin Fluid–Thin Structure Interaction Problems

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

We analyze a linear 3D/3D fluid–structure interaction problem between a thin layer of a viscous fluid and a thin elastic plate-like structure with the aim of deriving a simplified reduced model. Based on suitable energy dissipation inequalities quantified in terms of two small parameters, thickness of the fluid layer and thickness of the elastic structure, we identify the right relation between the system coefficients and small parameters which eventually provide a reduced model on the vanishing limit. The reduced model is a linear sixth-order thin-film equation describing the out-of-plane displacement of the structure, which is justified in terms of weak convergence results relating its solution to the solutions of the original fluid–structure interaction problem. Furthermore, approximate solutions to the fluid-structure interaction problem are reconstructed from the reduced model and quantitative error estimates are obtained, which provide even strong convergence results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Avalos, G., Triggiani, R.: The coupled PDE system arising in fluid/structure interaction. I. Explicit semigroup generator and its spectral properties. Fluids and waves, 15–54, Contemp. Math., 440, Amer. Math. Soc., Providence, RI (2007)

  2. Avalos, G., Triggiani, R.: Semigroup well-posedness in the energy space of a parabolic-hyperbolic coupled Stokes-Lamé PDE system of fluid-structure interaction. Discr. Contin. Dyn. Sys. Ser. S 2, 417–447 (2009)

    MATH  Google Scholar 

  3. Avalos, G., Lasiecka, I., Triggiani, R.: Higher regularity of a coupled parabolic-hyperbolic fluid-structure interactive system. Georgian Math. J. 15, 403–437 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Bayada, G., Chambat, M.: The transition between the Stokes equations and the Reynolds equation: a mathematical proof. Appl. Math. Optim. 14(1), 73–93 (1986)

    MathSciNet  MATH  Google Scholar 

  5. Becker, J., Grün, G.: The transition between the Stokes equations and the Reynolds equation: a mathematical proof. J. Phys.: Condens. Matter 17, 291–307 (2005)

    Google Scholar 

  6. Bertozzi, A.: The mathematics of moving contact lines in thin liquid films. Notices Am. Math. Soc. 45, 689–697 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Bodnár, T., Galdi, G.P., Nečasova, Š.: Fluid-Structure Interaction in Biomedical Applications. Springer, Birkhouser (2014)

    MATH  Google Scholar 

  8. Bolotin, V.V.: Nonconservative Problems of the Theory of Elastic stability. Pergamon Press, London (1963)

    MATH  Google Scholar 

  9. Bukač, M., Čanić, S., Muha, B., Glowinski, R.: An operator splitting approach to the solution of fluid-structure interaction problems in hemodynamics, science engineering. In: Glowinski, R., Osher, S., Yin, W. (eds.) Splitting Methods in Communication and Imaging Science and Engineering. Springer, New York (2016)

    MATH  Google Scholar 

  10. Bukal, M., Muha, B.: A review on rigorous derivation of reduced models for fluid-structure interaction systems. To appear in Waves in Flows, Eds. T. Bodnár, G. P. Galdi, and Š. Nečasová, Birkhäuser, Cham (2020)

  11. Bukal, M., Muha, B.: Justification of a nonlinear sixth-order thin-film equation as the reduced model for a fluid--structure interaction problem. In preparation (2020)

  12. Bunger, A.P., Detournay, E.: Asymptotic solution for a penny-shaped near-surface hydraulic fracture. Engin. Fract. Mech. 72, 2468–2486 (2005)

    Google Scholar 

  13. Čanić, S., Mikelić, A.: Effective equations modeling the flow of a viscous incompressible fluid through a long elastic tube arising in the study of blood flow through small arteries. SIAM J. Appl. Dyn. Syst. 2(3), 431–463 (2003)

    MathSciNet  MATH  Google Scholar 

  14. Chambolle, A., Desjardins, B., Esteban, M.J., Grandmont, C.: Existence of weak solutions for the unsteady interaction of a viscous fluid with an elastic plate. J. Math. Fluid Mech. 7(3), 368–404 (2005)

    MathSciNet  MATH  Google Scholar 

  15. Chueshov, I.: Dynamics of a nonlinear elastic plate interacting with a linearized compressible viscous fluid. Nonlinear Anal. 95, 650–665 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Chueshov, I., Dowell, E.H., Lasiecka, I., Webster, J.T.: Mathematical aeroelasticity: a survey. J. MESA 7, 5–29 (2016)

    Google Scholar 

  17. Ciarlet, P.G.: Mathematical Elasticity: Three-Dimensional Elasticity. North-Holland Publishing Co, Amsterdam (1988)

    MATH  Google Scholar 

  18. Ciarlet, P.G.: Mathematical Elasticity, Theory of Plates. North-Holland Publishing Co, Amsterdam (1997)

    MATH  Google Scholar 

  19. Cioranescu, D., Damlamian, A., Griso, G.: The Periodic Unfolding Method: Theory and Applications to Partial Differential Problems, Series in Contemporary Mathematics 3. Springer, New York (2018)

    MATH  Google Scholar 

  20. Coutand, D., Shkoller, S.: The interaction between quasilinear elastodynamics and the Navier-Stokes equations. Arch. Ration. Mech. Anal. 179(3), 303–352 (2006)

    MathSciNet  MATH  Google Scholar 

  21. Ćurković, A., Marušić-Paloka, E.: Asymptotic analysis of a thin fluid layer-elastic plate interaction problem. Appl. Anal. 98, 2118–2143 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Das, S.B., Joughin, I., Behn, M., Howat, I., King, M.A., Lizarralde, D., Bhatia, M.P.: Fracture propagation to the base of the Greenland ice sheet during supraglacial lake drainage. Science 320, 778–781 (2008)

    Google Scholar 

  23. Daw, R., Finkelstein, J.: Lab on a chip. Nat. Insight 442, 367–418 (2006)

    Google Scholar 

  24. Destuynder, P.: Asymptotic behavior of structures made of plates. ESAIM Math. Model. Numer. Anal. 15, 331–369 (1981)

    Google Scholar 

  25. Dowell, E.H.: A Modern Course in Aeroelasticity. Volume 217 of the Solid Mechanics and Its Applications Book Series. Springer, New York (2015)

    Google Scholar 

  26. Du, Q., Gunzburger, M.D., Hou, L.S., Lee, J.: Analysis of a linear fluid-structure interaction problem. Discr. Contin. Dyn. Syst. 9, 633–650 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Duvnjak, A., Marušić-Paloka, E.: Derivation of the Reynolds equation for lubrication of a rotating shaft. Arch. Math. 36, 239–253 (2000)

    MathSciNet  MATH  Google Scholar 

  28. Galdi, G.P.: An introduction to the Navier–Stokes initial-boundary Value Problem. In: Galdi, G.P., Heywood, J.G., Rannacher, R. (eds.) Fundamental Directions in Mathematical Fluid Mechanics. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel (2000)

    MATH  Google Scholar 

  29. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems. Springer, New York (2011)

    MATH  Google Scholar 

  30. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, p. 401. Springer, Berlin, New York (1977)

    MATH  Google Scholar 

  31. Griso, G.: Asymptotic behavior of structures made of plates. Anal. Appl. 3, 325–356 (2005)

    MathSciNet  MATH  Google Scholar 

  32. Heil, M., Hazel, A.L., Smith, J.A.: The mechanics of airway closure. Respir. Physiol. Neurobiol. 163, 214–221 (2008)

    Google Scholar 

  33. Hewit, I.J., Balmforth, N.J., de Bruyn, J.R.: Elastic-plated gravity currents. Eur. J. Appl. Math. 26, 1–31 (2015)

    MathSciNet  MATH  Google Scholar 

  34. Hosoi, A.E., Mahadevan, L.: Peeling, healing and bursting in a lubricated elastic sheet. Phys. Rev. Lett. 93, 137802 (2004)

    Google Scholar 

  35. Huang, R., Suo, Z.: Wrinkling of a compressed elastic film on a viscous layer. J. Appl. Phys. 91, 1135–1142 (2002)

    Google Scholar 

  36. Kaltenbacher, B., Kukavica, I., Lasiecka, I., Triggiani, R., Tuffaha, A., Webster, J.T.: Mathematical Theory of Evolutionary Fluid-Flow Structure Interactions. Birkhuser, Berlin (2018)

    MATH  Google Scholar 

  37. King, J.R.: The isolation oxidation of silicon the reaction-controlled case. SIAM J. Appl. Math. 49, 1064–1080 (1989)

    MathSciNet  MATH  Google Scholar 

  38. Lauga, E., Brenner, M.P., Stone, H.A.: Microfluidics: the no-slip boundary condition. In: Foss, J., Tropea, C., Yarin, A. (eds.) Handbook of Experimental Fluid Dynamics. Springer, New-York (2005)

    Google Scholar 

  39. Lewicka, M., Müller, S.: The isolation oxidation of silicon the reaction-controlled case. Ann. de l’Institut Henri Poincare (C) Non Linear Anal. 28, 443–469 (2011)

    MATH  Google Scholar 

  40. Lions, J.-L., Magenes, E.: Non-homogeneous Boundary Value Problems and Applications. Springer, New York-Heidelberg (1972)

    MATH  Google Scholar 

  41. Lister, J.R., Peng, G.G., Neufeld, J.A.: Spread of a viscous fluid beneath an elastic sheet. Phys. Rev. Lett. 111, 15 (2013)

    Google Scholar 

  42. Marušić-Paloka, E.: The effects of flexion and torsion on a fluid flow through a curved pipe. Appl. Math. Optim. 44, 245–272 (2001)

    MathSciNet  MATH  Google Scholar 

  43. Michaut, C.: Dynamics of magmatic intrusions in the upper crust: Theory and applications to laccoliths on Earth and the Moon. J. Geophys. Res. 116, B5 (2011)

    Google Scholar 

  44. Mikelić, A., Guidoboni, G., Čanić, S.: The effects of flexion and torsion on a fluid flow through a curved pipe. Netw. Heterog. Media 2(3), 397–423 (2007)

    MathSciNet  MATH  Google Scholar 

  45. Muha, B., Čanić, S.: Existence of a solution to a fluid-multi-layered-structure interaction problem. J. Differ. Equ. 256(2), 658–706 (2014)

    MathSciNet  MATH  Google Scholar 

  46. Nazarov, S.A., Piletskas, K.I.: The Reynolds flow of a fluid in a thin three-dimensional channel. Litovsk. Mat. Sb. 30(4), 772–783 (1990)

    MathSciNet  Google Scholar 

  47. Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997)

    Google Scholar 

  48. Panasenko, G.P., Stavre, R.: Asymptotic analysis of a periodic flow in a thin channel with visco-elastic wall. J. Math. Pures Appl. 85, 558–579 (2006)

    MathSciNet  MATH  Google Scholar 

  49. Panasenko, G.P., Stavre, R.: Asymptotic analysis of a viscous fluid-thin plate interaction: periodic flow. Math. Models Methods in Appl. Sci. 24, 1781–1822 (2014)

    MathSciNet  MATH  Google Scholar 

  50. Panasenko, G.P., Stavre, R.: Viscous fluid-thin elastic plate interaction: asymptotic analysis with respect to the rigidity and density of the plate. Appl. Math. Optim. 81, 141–194 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Panasenko, G.P., Stavre, R.: Three dimensional asymptotic analysis of an axisymmetric flow in a thin tube with thin stiff elastic wall. J. Math. Fluid Mech. 22, 20 (2020). https://doi.org/10.1007/s00021-020-0484-8

    Article  MathSciNet  MATH  Google Scholar 

  52. Pihler-Puzović, D., Illien, P., Heil, M., Juel, A.: Suppression of complex fingerlike patterns at the interface between air and a viscous fluid by elastic membranes. Phys. Rev. Lett. 108, 074502 (2012)

    Google Scholar 

  53. Pihler-Puzović, D., Juel, A., Heil, M.: The interaction between viscous fingering and wrinkling in elastic-walled Hele-Shaw cells. Phys. Fluids (in press) (2014)

  54. Stone, H.A., Stroock, A.D., Ajdari, A.: Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381–411 (2004)

    MATH  Google Scholar 

  55. Szeri, A.Z.: Fluid Film Lubrication. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  56. Tambača, J., Čanić, S., Mikelić, A.: Effective model of the fluid flow through elastic tube with variable radius. In: XI. Mathematikertreffen Zagreb-Graz, volume 348 of Grazer Math. Ber., pages 91–112. Karl-Franzens-Univ. Graz, Graz (2005)

  57. Taroni, M., Vella, D.: Multiple equilibria in a simple elastocapillary system. J. Fluid Mech. 712, 273–294 (2012)

    MathSciNet  MATH  Google Scholar 

  58. Titze, I.: Principles of Voice Production. Prentice Hall, New York (1994)

    Google Scholar 

  59. Tsai, V.C., Rice, J.R.: Modeling turbulent hydraulic fracture near a free surface. J. App. Mech. 79, (2012)

  60. Yenduri, A., Ghoshal, R., Jaiman, R.K.: A new partitioned staggered scheme for flexible multibody interactions with strong inertial effects. Comput. Methods Appl. Mech. Eng. 315, 316–347 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Muha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been supported in part by Croatian Science Foundation under Projects UIP-05-2017-7249 (MANDphy) and 3706 (FSIApp). Authors are very thankful to Igor Velčić (University of Zagreb) for his insightful comments and suggestions as well as to the reviewer for his valuable remarks which improved the manuscript.

Appendix A: Griso Decomposition and Korn Inequality on Thin Domain

Appendix A: Griso Decomposition and Korn Inequality on Thin Domain

The following result is directly from [31, Theorem 2.3], tailored to the specific boundary conditions and geometry considered in this paper.

Theorem A.1

Let \(h>0\), then every \(\varvec{u}^h\in V_S(\Omega _h)\) can be decomposed as

$$\begin{aligned} \varvec{u}^h(x) = \varvec{w}^h(x') + (x_3 - h/2)\varvec{e}_3\times \varvec{r}^h(x') + {{\tilde{\varvec{u}}}}^h(x)\,,\quad (x',x_3)\in \Omega _h\,, \end{aligned}$$
(108)

or written componentwise

$$\begin{aligned} u_1^h(x)&= w_1^h(x') + (x_3-h/2)r_2^h(x') + {\tilde{u}}_1^h(x)\,,\\ u_2^h(x)&= w_2^h(x') - (x_3-h/2)r_1^h(x') + {\tilde{u}}_2^h(x)\,,\\ u_3^h(x)&= w_3^h(x') + {\tilde{u}}_3^h(x)\,, \end{aligned}$$

where

$$\begin{aligned} \varvec{w}^h(x') = \frac{1}{h}\int _0^h \varvec{u}^h(x',x_3){\mathrm {d}}x_3\,,\quad \varvec{r}^h(x') = \frac{3}{h^3}\int _0^h (x_3 - h/2)\varvec{e}_3\times \varvec{u}^h(x',x_3){\mathrm {d}}x_3\,, \end{aligned}$$

and \({{\tilde{\varvec{u}}}}^h\in V_S(\Omega _h)\) is so called warping or residual term. The main part of the decomposition, denoted by \(\varvec{u}_E^h = \varvec{w}^h(x') + (x_3 - h/2)\varvec{e}_3\times \varvec{r}^h(x')\), is called the elementary plate displacement. Moreover, the following estimate holds

$$\begin{aligned} \Vert {\text {sym}}\nabla \varvec{u}_E^h\Vert _{L^2(\Omega _h)}^2 + \Vert \nabla {\tilde{\varvec{u}}}^h\Vert _{L^2(\Omega _h)}^2 + \frac{1}{h^2}\Vert {\tilde{\varvec{u}}}^h\Vert _{L^2(\Omega _h)}^2 \le C\Vert {\text {sym}}\nabla {\varvec{u}}^h\Vert _{L^2(\Omega _h)}^2\,, \end{aligned}$$
(109)

where \(C>0\) is independent of \(\varvec{u}^h\) and h.

Theorem A.2

(Korn inequality on thin domains) Let \(\omega \subset {\mathbb R}^2\) be Lipschitz domain and \(\gamma \subset \partial \omega \) part of its boundary of positive measure, then there exists a constant \(C_K>0\) and \(h_0>0\) such that for every \(0<h<h_0\)

$$\begin{aligned}&\Vert (\psi _1,\psi _2,h\psi _3)\Vert _{H^1(\Omega ;{\mathbb R}^3)}^2 \\&\quad \le C_K\Big (\Vert (\psi _1,\psi _2,h\psi _3)\Vert _{L^2(\Omega ;{\mathbb R}^3)}^2+\Vert {\text {sym}}\nabla _h\varvec{\psi }\Vert _{L^2(\Omega ;{\mathbb R}^9)}^2\Big )\,, \quad \forall \varvec{\psi }\in H^1(\Omega ;{\mathbb R}^3)\,, \end{aligned}$$

where \(\Omega = \omega \times (0,1)\). The Korn constant \(C_K\) depends only on \(\omega \) and \(\gamma \).

Proof

The proof follows by the Griso’s decomposition of \(\varvec{\psi }\in H_\gamma ^1(\Omega ;{\mathbb R}^3)\) (see [31]) and application of the Korn inequality for functions defined on \(\omega \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bukal, M., Muha, B. Rigorous Derivation of a Linear Sixth-Order Thin-Film Equation as a Reduced Model for Thin Fluid–Thin Structure Interaction Problems. Appl Math Optim 84, 2245–2288 (2021). https://doi.org/10.1007/s00245-020-09709-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-020-09709-9

Keywords

Mathematics Subject Classification

Navigation