Skip to main content
Log in

Structural and Thermodynamic Characteristics of Potato Starches Depending on the Plant Genotype and Conditions of Their Cultivation

  • CHEMICAL PHYSICS OF POLYMER MATERIALS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The creation of new highly productive forms of potato by genetic engineering methods raises the question about the quality of transgenic tubers, which first of all relates to the properties of important storage compound such as starch. The article presents the results of studies aiming to the analysis of morphology, structure, and thermodynamic parameters of starch extracted from the potato tubers expressing the tms1 auxin biosynthesis gene from Agrobacterium tumefaciens and characterized by increased productivity in vitro. The transformed and control plants were cultivated in vitro on artificial sterile medium, as well as in vivo in the soil. The methods of scanning electron microscopy, wide-angle X-ray scattering, and differential scanning microcalorimetry were used in the work. It was established that the transformation of plants with the construction with the tms1 gene under the control of the patatin gene promoter causes significant changes in a number of thermodynamic parameters of starch, first of all an increase in the thickness of crystalline lamella and melting temperature, which apparently reflects the increase in the structural ordering of the main starch fraction (approximately 90%) in the tubers of these transformants. Along with this, the effect of accumulating fractions with a less ordered structure in the starch composition, correlating with the ectopic expression of the tms1 auxin biosynthesis gene, was established. At the same time, the B type of the polymorphic structure of starch remains unchanged. However, the detected changes mainly affected starch of the plants, cultivated in vitro. The starch of transgenic plants cultivated in the soil differs little in its basic characteristics from the starch of nontransgenic control plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. C. Zeeman, J. Kossmann, and A. M. Smith, Ann. Rev. Plant Biol. 61, 209 (2010).

    Article  CAS  Google Scholar 

  2. A. I. Sergeev, N. G. Shilkina, L. A. Wasserman, S. I. Shilov, and H. Staroszczyk, Russ. J. Phys. Chem. B 11, 361 (2017).

    Article  CAS  Google Scholar 

  3. R. M. Aseeva, P. A. Sakharov, and A. M. Sakharov, Russ. J. Phys. Chem. B 3, 884 (2009).

    Article  Google Scholar 

  4. S. Z. Rogovina, K. V. Aleksanyan, L. V. Vladimirov, and A. A. Berlin, Russ. J. Phys. Chem. B 13, 812 (2019).

    Article  CAS  Google Scholar 

  5. L. A. Zhorina, O. P. Kuznetsova, S. Z. Rogovina, L. V. Vladimirov, A. V. Grachev, E. V. Prut, and A. A. Berlin, Russ. J. Phys. Chem. B 12, 1076 (2018).

    Article  CAS  Google Scholar 

  6. N. P. Aksenova, L. I. Sergeeva, T. N. Konstantinova, S. A. Golyanovskaya, O. O. Kolachevskaya, and G. A. Romanov, Russ. J. Plant Physiol. 60, 301 (2013).

    Article  CAS  Google Scholar 

  7. P. Geigenberger, Plant Physiol., No. 155, 1566 (2011).

  8. N. P. Aksenova, T. N. Konstantinova, S. A. Golyanovskaya, L. I. Sergeeva, and G. A. Romanov, Russ. J. Plant Physiol. 59, 451 (2012).

    Article  CAS  Google Scholar 

  9. X. Xu, D. Vreugdenhil, and A. A. M. van Lammeren, J. Exp. Bot. 49, 573 (1998).

    Article  CAS  Google Scholar 

  10. N. P. Aksenova, T. N. Konstantinova, S. A. Golyanovskaya, I. Kossmann, L. Willmitzer, and G. A. Romanov, Russ. J. Plant Physiol. 47, 370 (2000).

    CAS  Google Scholar 

  11. J. Shan, W. Song, J. Zhou, et al., Genomics 102, 388 (2013).

    Article  CAS  Google Scholar 

  12. L. A. Wasserman, A. I. Sergeev, V. G. Vasil’ev, I. G. Plashchina, N. P. Aksenova, T. N. Konstantinova, S. A. Golyanovskaya, L. I. Sergeeva, and G. A. Romanov, Carbohydr. Res. 125, 214 (2015).

    Article  CAS  Google Scholar 

  13. I. A. Gukasyan, S. A. Golyanovskaya, E. V. Grishunina, T. N. Konstantinova, N. P. Aksenova, and G. A. Romanov, Russ. J. Plant Physiol. 52, 809 (2005).

    Article  CAS  Google Scholar 

  14. N. P. Aksenova, L. A. Vasserman, L. I. Sergeeva, T. N. Konstantinova, S. A. Golyanovskaya, A. V. Krivandin, I. G. Plashchina, V. Blazchak, I. Fornal, and G. A. Romanov, Russ. J. Plant Physiol. 57, 656 (2010).

    Article  CAS  Google Scholar 

  15. O. O. Kolachevskaya, V. V. Alekseeva, L. I. Sergeeva, E. B. Rukavtsova, I. A. Getman, D. Vreugdenhil, Y. I. Buryanov, and G. A. Romanov, J. Integr. Plant Biol. 57, 734 (2015).

    Article  CAS  Google Scholar 

  16. M. Richter, S. Augustat, and F. Schierbaum, Selected Methods in Starch Chemistry (Wissenschaftlliche Verlagsgesellsch., Stuttgart, 1968).

    Google Scholar 

  17. I. I. Bocharnikova, L. A. Wasserman, A. V. Krivandin, et al., J. Therm. Anal. Calorim. 74, 681 (2003).

    Article  CAS  Google Scholar 

  18. L. A. Wasserman, A. A. Papakhin, Z. M. Borodina, A. V. Krivandin, A. I. Sergeev, and V. F. Tarasov, Carbohydr. Res. 212, 260 (2019).

    Article  CAS  Google Scholar 

  19. N. R. Andreev, E. N. Kalistratova, L. A. Wasserman, and V. P. Yuryev, Starch-Starke 50, 422 (1999).

    Article  Google Scholar 

  20. P. L. Privalov and S. A. Potekhin, Methods Enzymol. 131, 4 (1986).

    Article  CAS  Google Scholar 

  21. Y. I. Matveev, J. J. G. van Soest, C. Nieman, L. A. Wasserman, V. A. Protserov, M. G. Ezernitskaja, and V. P. Yuryev, Carbohydr. Res. 44, 151 (2001).

    Article  CAS  Google Scholar 

  22. Ch. Gernat, S. Radosta, H. Anger, and G. Damaschun, Starch-Starke 45, 309 (1993).

    Article  CAS  Google Scholar 

  23. A. Imberty, H. Chanzy, S. Perez, A. Buleon, and V. Tran, J. Mol. Biol. 201, 365 (1988).

    Article  CAS  Google Scholar 

  24. S. Jaspreet and S. Narpinder, Food Hydrocolloids 17, 63 (2003).

    Article  Google Scholar 

  25. J. Singh and N. Singh, Food Chem. 75, 67 (2001).

    Article  CAS  Google Scholar 

  26. K. Svegmark and A. M. Hermansson, Food Struct. 12, 181 (1993).

    CAS  Google Scholar 

  27. P. Cairs, T. Bogracheva, S. G. Ring, L. L. Hedley, and V. J. Morris, Carbohydr. Res. 31, 275 (1997).

    Article  Google Scholar 

  28. V. P. Yuryev, L. A. Wasserman, N. R. Andreev, V. B. Tolstoguzov, in Starch and Starch Containing Origins–Structure, Properties and New Technologies, Ed. by V. P. Yuryev, A. Cesaro, and W. Bergthaller (Nova Sci., New York, 2002), p. 23.

    Google Scholar 

  29. T. Ya. Bogracheva, V. J. Morris, S. G. Ring, and C. L. Hedley, Biopolymers 45, 323 (1998).

    Article  CAS  Google Scholar 

  30. P. J. Jenkins, R. E. Cameron, and A. M. Donald, Starch-Starke 45, 417 (1995).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation, grant no. 17-74-20181 (generation and analysis of transgenic potato plants), and partially supported by the Ministry of Science and High Education, Russian Federation, themes 00842014005 (N01201253307) and 00822018006 (N18118020890097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Wasserman.

Additional information

Translated by A. Barkhash

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasserman, L.A., Krivandin, A.V., Filatova, A.G. et al. Structural and Thermodynamic Characteristics of Potato Starches Depending on the Plant Genotype and Conditions of Their Cultivation. Russ. J. Phys. Chem. B 14, 525–532 (2020). https://doi.org/10.1134/S1990793120030288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120030288

Keywords:

Navigation