Skip to main content
Log in

Study of Phototoxic Properties of Retinal and Its Derivatives in a Photoreceptor Cell by the Method of Pulsed Photolysis

  • CHEMICAL PHYSICS OF BIOLOGICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

It is believed that one of the causes of photodamage to the retina is the accumulation of all-trans-retinal (ATR) in the visual cells. However, the ATR is formed during photolysis inside the disk of the photoreceptor cell and transferred to the cytoplasm of the cell, where it is converted with a high yield to retinol, a nonphototoxic compound. Inside the disk, where ATR can accumulate, it can form Schiff bases, which are also not phototoxic compounds, with the amino groups of proteins and lipids. In addition, the resulting free retinal (R) isomers bind to specific retinal-binding proteins that can shield them from oxygen. Thus, the question on the concentrations in which free ATR can accumulate inside a cell is ambiguous. In this study, it is proposed to evaluate the concentration of free ATR in a cell by the yield of the excited triplet state, since neither the Schiff bases of ATR nor retinol are transformed into an excited triplet state. It is shown that 70% of ATR form Schiff bases in the equilibrium state in the native cell. This significantly reduces the likelihood that ATR is the main inducer of photodamage. Moreover, it is shown that the quantum yield of the formation reaction of an excited triplet state of R when it is bound to interfotoreceptor proteins is significantly reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Filipek, R. E. Stenkamp, D. C. Teller, and K. Palczewski, Ann. Rev. Physiol. 65, 851 (2003).

    Article  CAS  Google Scholar 

  2. O. Strauss, Physiol. Rev. 85, 845 (2005).

    Article  CAS  Google Scholar 

  3. N. Noy, Biochem. J. 348, 438 (2000).

    Article  Google Scholar 

  4. M. Rozanowska, J. Jarvis-Evans, V. V. Korytowsky, et al., J. Biol. Chem. 270, 18825 (1995).

    Article  CAS  Google Scholar 

  5. A. Maeda, T. Maeda, M. Golczak, et al., J. Biol. Chem. 284, 15173 (2009).

    Article  CAS  Google Scholar 

  6. J. R. Sparrow, Y. Wu, C. Y. Kim, and J. Zhou, J. Lipid Res. 51, 247 (2010).

    Article  CAS  Google Scholar 

  7. T. D. Lamb and E. N. Pugh, Jr., Prog. Retin. Eye Res. 23, 307 (2004).

    Article  CAS  Google Scholar 

  8. M. Rozanowska and T. Sarna, J. Photochem. Photobiol. 81, 1305 (2005).

    Article  CAS  Google Scholar 

  9. K. Palczewski, S. Jager, J. Buczylko, et al., Biochemistry 33, 13741 (1994).

    Article  CAS  Google Scholar 

  10. S. J. Fliesler and R. E. Anderson, Prog. Lipid Res. 22, 79 (1983).

    Article  CAS  Google Scholar 

  11. P. P. Levin, A. S. Tatikolov, I. G. Panova, and N. B. Sul’timova, High Energy Chem. 44, 216 (2010).

    Article  CAS  Google Scholar 

  12. P. P. Levin, P. V. Aboltin, T. F. Shevchenko, and G. R. Kalamkarov, High Energy Chem. 44, 520 (2010).

    Article  CAS  Google Scholar 

  13. P. P. Levin, P. V. Aboltin, T. S. Konstantinova, T. F. Shevchenko, and G. R. Kalamkarov, High Energy Chem. 47, 103 (2013).

    Article  CAS  Google Scholar 

  14. R. V. Bensasson, E. J. Land, and T. G. Truscott, Flash Photolysis and Pulse Radiolysis Contributions to the Chemistry of Biology and Medicine (Elsevier, Amsterdam, 1983).

    Google Scholar 

  15. R. S. Becker, Photochem. Photobiol. 48, 369 (1988).

    Article  CAS  Google Scholar 

  16. W. S. Harper and E. R. Gaillard, Photochem. Photobiol. 73, 71 (2001).

    Article  CAS  Google Scholar 

  17. E. B. Abuin and E. A. Lissi, Prog. React. Kinet. 16, 1 (1991).

    CAS  Google Scholar 

  18. Y. Chen and N. Noy, Biochemistry 33, 10658 (1994).

    Article  CAS  Google Scholar 

  19. I. E. Borissevitch, T. T. Tominaga, and C. C. Schmitt, J. Photochem. Photobiol., A 114, 201 (1998).

    Article  CAS  Google Scholar 

  20. K. Lang, D. M. Wagnerova, P. Engst, and P. Kubat, Int. J. Res. Phys. Chem. Chem. Phys. 187, 213 (1994).

    CAS  Google Scholar 

  21. X. Qu, T. Komatsu, T. Sato, et al., Bioconjugate Chem. 19, 1556 (2008).

    Article  CAS  Google Scholar 

  22. E. Alarcon, A. M. Edwards, A. Aspee, C. D. Borsarelli, and E. A. Lissi, Photochem. Photobiol. Sci. 8, 933 (2009).

    Article  CAS  Google Scholar 

  23. R. Boch, N. Mohtat, Y. Lear, et al., Photochem. Photobiol. 64, 92 (1996).

    Article  CAS  Google Scholar 

  24. A. V. Lobanov, G. S. Dmitrieva, N. B. Sultimova, and P. P. Levin, Russ. J. Phys. Chem. B 8, 272 (2014).

    Article  CAS  Google Scholar 

  25. I. R. Mardaleishvili, P. P. Levin, and V. B. Ivanov, Russ. J. Phys. Chem. B 3, 560 (2009).

    Article  Google Scholar 

  26. A. V. Kutsenova, V. A. Kutyrkin, and P. P. Levin, Khim. Fiz. 8, 1388 (1989).

    Google Scholar 

  27. A. V. Kutsenova, N. B. Sultimova, and P. P. Levin, Russ. J. Phys. Chem. B 4, 834 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Kalamkarov.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalamkarov, G.R., Shevchenko, T.F., Aboltin, P.V. et al. Study of Phototoxic Properties of Retinal and Its Derivatives in a Photoreceptor Cell by the Method of Pulsed Photolysis. Russ. J. Phys. Chem. B 14, 488–491 (2020). https://doi.org/10.1134/S1990793120030185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120030185

Keywords:

Navigation