Skip to main content
Log in

AFM Research of Supramolecular Structures

  • REACTION ON SURFACE
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A new approach to the research of supramolecular complexes by the AFM method and the possible role of hydrogen bonds in the formation of nanostructures of metal complexes simulating the active centers of enzymes was proposed. The formation of these structures occurs due to non-covalent intermolecular interactions, and to a certain extent reflects the structure of the complexes involved in the mechanisms of homogeneous and enzymatic catalysis, as well as during morphological changes of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Atomic Force Microscopy for Materials, Microscopy EKB Ser., Ed. by J. Heath, Spectroscopy and Separations EKB Ser., Ed. by N. Taylor (Wiley, Chichester, UK, 2017).

  2. A. G. Slater, L. M. A. Perdigão, P. H. Beton, et al., Acc. Chem. Res. 47, 3417 (2014)

    CAS  PubMed  Google Scholar 

  3. F. Biedermann and H.-J. Schneider, Chem. Rev. 116, 5216 (2016)

    CAS  PubMed  Google Scholar 

  4. L. I. Matienko, V. I. Binyukov, L. A. Mosolova, et al., Chem. Chem. Tech. 8, 339 (2014).

    CAS  Google Scholar 

  5. L. I. Matienko, L. A. Mosolova, and G. E. Zaikov, Selective Catalytic Hydrocarbons Oxidation.New Perspectives (Nova Science, New York, USA, 2010).

    Google Scholar 

  6. L. I. Matienko and L. A. Mosolova, Oxid. Commun. 37, 20 (2014)

    CAS  Google Scholar 

  7. L. I. Matienko, V. I. Binyukov, L. A. Mosolova, et al., Oxid. Commun. 40, 569 (2017).

    CAS  Google Scholar 

  8. A. R. Deshpande, Th. C. Pochapsky, and D. Ringe, Chem. Rev. 117, 10474 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. St. Leitgeb, G. D. Straganz, and B. Nidetzky, FEBS J. 276, 5983 (2009).

    CAS  PubMed  Google Scholar 

  10. L. I. Matienko, V. I. Binyukov, E. M. Mil, et al., Oxid. Commun. 41, 429 (2018).

    CAS  Google Scholar 

  11. I. P. Beletskaya, V. S. Tyurin, and A. Yu. Tsivadze, Chem. Rev. 109, 1659 (2009).

    CAS  PubMed  Google Scholar 

  12. E. J. Basom, A. M. Bryce, and C. Th. Megan, Biochemistry 56, 3248 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. V. I. Binyukov, E. M. Mil, I. V. Zhigacheva, A. A. Albantova, I. P. Generozova, A. G. Shugaev, S. G. Fattakhov, and A. I. Konovalov, Dokl. Biochem. Biophys. 446, 220 (2012).

    CAS  PubMed  Google Scholar 

  14. E. M. Mil, V. I. Binyukov, I. V. Zhigacheva, et al., VTU (Kazan), No. 3, 141 (2013)

  15. E. M. Mil and V. N. Erokhin, Bull. Exp. Biol. Med. 164, 673 (2018). https://doi.org/10.1007/s10517-018-4056-3

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported by the PFR RAS 14P, NIOKTR Number: AAAA-A17-117121920169-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Matienko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matienko, L.I., Mil, E.M. & Binyukov, V.I. AFM Research of Supramolecular Structures. Russ. J. Phys. Chem. B 14, 559–563 (2020). https://doi.org/10.1134/S1990793120030227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120030227

Keywords:

Navigation