Skip to main content
Log in

Determination of Polycyclic Aromatic Hydrocarbons in Soil and Bottom Sediments by Gas Chromatography–Mass Spectrometry Using Dispersive Liquid–Liquid Microextraction

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

The problems and advantages of chromatographic methods for the determination of polycyclic aromatic hydrocarbons (PAHs) in model and real samples of black soil (chernozem), sand, and bottom sediments of the Sea of Azov and the Kurchansky estuary are discussed. We substantiated and implemented sample preparation for analysis using dispersion liquid–liquid microextraction. PAH concentrations in soils of various types and bottom sediments were determined by gas chromatography–mass spectrometry. The specific features of sample preparation of soil and bottom sediments are studied aimed at achieving the maximum recovery of PAHs into the organic phase; the composition of the extraction system and the conditions for the extraction of analytes are optimized; the optimal sample weight is selected. We proposed a gas chromatographic system with mass spectrometric detection (GC–MS) for determining 20 PAHs in soil (bottom sediments). The limits of quantification for the studied PAHs in soils and bottom sediments were 0.2–0.5 µg/kg. The optimized procedure for the GC–MS determination of PAHs was tested on real samples of bottom sediments of the Temryuk Bay of the Sea of Azov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Kipopoulou, A.M., Manoli, E., and Samara, C., Environ. Pollut., 1999, vol. 106, p. 369.

    CAS  PubMed  Google Scholar 

  2. Cai, C., Zhang, Y., Reid, B.J., and Nunes, L.M., J. Environ. Monit., 2012, vol. 14, p. 3111.

    CAS  PubMed  Google Scholar 

  3. Viguri, J., Verde, J., and Irabien, A., Chemosphere, 2002, vol. 48, p. 157.

    CAS  PubMed  Google Scholar 

  4. Ravelo-Pérez, L.M., Hernández-Borges, J., Herrera-Herrera, A.V., and Rodríguez-Delgado, M.Á., Anal. Bioanal. Chem., 2009, vol. 395, p. 2387.

    PubMed  Google Scholar 

  5. Daneshfar, A., Khezeli, T., and Lotfi, H.J., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2009, vol. 877, p. 456.

    CAS  Google Scholar 

  6. GN (Sanitary-Hygienic Standard) 2.1.7.12-1-2004: List of Maximum Permissible Concentrations (MPC) and Estimated Permissible Concentrations (EPC) of Chemicals in the Soil, Minsk, 2004.

  7. GN (Sanitary-Hygienic Standard) 2.1.7.2041-06: Maximum Permissible Concentrations (MPC) of Chemicals in the Soil, Moscow, 2006.

  8. Poster, D.L., Schantz, M.M., Sander, L.C., and Wise, S.A., Anal. Bioanal. Chem., 2006, vol. 386, p. 859.

    CAS  PubMed  Google Scholar 

  9. Gimeno, R.A., Altelaar, A.F.M., Marcé, R.M., and Borrull, F., J. Chromatogr. A, 2002, vol. 958, p. 141.

    CAS  PubMed  Google Scholar 

  10. Wise, S.A., Sander, L.C., Chang, H.-C.K., Markides, K.E., and Lee, M.L., Chromatographia, 1988, vol. 25, p. 473.

    CAS  Google Scholar 

  11. Santos, F.J. and Galceran, M.T., TrAC,Trends Anal. Chem., 2002, vol. 21, p. 672.

    CAS  Google Scholar 

  12. Baumard, P. and Budzinski, H., Analusis, 1997, vol. 25, p. 246.

    CAS  Google Scholar 

  13. Santos, F.J. and Galceran, M.T., J. Chromatogr. A, 2003, vol. 1000, p. 125.

    CAS  PubMed  Google Scholar 

  14. Hassan, J., Izadib, M., and Homayonnejad, S., J. Braz. Chem. Soc., 2013, vol. 24, p. 639.

    CAS  Google Scholar 

  15. Shamsipur, M. and Hassan, J., J. Chromatogr. A, 2010, vol. 1217, p. 4877.

    CAS  PubMed  Google Scholar 

  16. Eriksson, M., Eriksson, M., Fäldt, J., Dalhammar, G., and Borg-Karlson, A.-K., Chemosphere, 2001, vol. 44, p. 1641.

    CAS  PubMed  Google Scholar 

  17. Rocha, M.J., Ferreira, P.C., Reis, P.A., Cruzeiro, C., and Rocha, E., J. Chromatogr. Sci., 2011, vol. 49, p. 695.

    CAS  PubMed  Google Scholar 

  18. Doong, R., Chang, S., and Sun, Y., J. Chromatogr. Sci., 2000, vol. 38, p. 528.

    CAS  PubMed  Google Scholar 

  19. Zhu, L. and Synergistic, S.F., Chemosphere, 2002, vol. 53, p. 459.

    Google Scholar 

  20. Delgado, B., Pino, V., Ayala, J.H., González, V., and Afonso, A.M.M., Anal. Chim. Acta, 2004, vol. 518, p. 165.

    CAS  Google Scholar 

  21. Zhao, Q., Weise, L., Li, P., Yang, K., Zhang, Y., Dong, D., Li, P., and Li, X., J. Hazard. Mater., 2010, vol. 183, p. 881.

    CAS  PubMed  Google Scholar 

  22. Casero, I., Sicilia, D., Rubio, S., and Pérez-Bendito, D., Anal. Chem., 1999, vol. 71, p. 4519.

    CAS  Google Scholar 

  23. Goryacheva, I.Y., Shtykov, S.N., Loginov, A.S., and Panteleeva, I.V., Anal. Bioanal. Chem., 2005, vol. 382, p. 1413.

    CAS  PubMed  Google Scholar 

  24. Merino, F., Rubio, S., and Pérez-Bendito, D., J. Chromatogr. A, 2002, vol. 962, p. 1.

    CAS  PubMed  Google Scholar 

  25. Song, G., Lu, C., and Lin, J.-M., Anal. Chim. Acta, 2007, vol. 596, p. 312.

    CAS  PubMed  Google Scholar 

  26. Tolmacheva, N.G., Zhang, M., Pirogov, A.V., Popik, M.V., and Shpigun, O.A., J. Anal. Chem., 2017, vol. 72, p. 602.

    CAS  Google Scholar 

  27. Pena, T., Casais, C., Mejuto, C., and Cela, R., J. Chromatogr. A, 2009, vol. 1216, p. 6356.

    CAS  PubMed  Google Scholar 

  28. Rezaee, M., Assadi, Y., Hosseini, M.R.M., Aghaee, E., Ahmadi, F., and Berijani, S., J. Chromatogr. A, 2006, vol. 1116, nos. 1–2, p. 1.

    CAS  PubMed  Google Scholar 

  29. Avino, P., Notardonato, I., Peruginib, L., and Russo, M.V., Microchem. J., 2017, vol. 133, p. 251.

    CAS  Google Scholar 

  30. Tseng, W.-C., Chen, P.-S., and Huang, S.-D., Talanta, 2014, vol. 120, p. 425.

    CAS  PubMed  Google Scholar 

  31. Song, X., Zhang, S., and Li, T., IOP Conf. Ser.: Earth Environ. Sci., 2018, vol. 121, 022017.

  32. Kamankesha, M., Mohammadia, A., Hosseinia, H., and Modarres, Z., Eur. Food Res. Technol., 2015, vol. 240, p. 441.

    Google Scholar 

  33. Gomez-Eyles, J.L., Collins, C.D., and Hodson, M.E., Environ. Pollut., 2011, vol. 159, p. 918.

    CAS  PubMed  Google Scholar 

  34. Zheng, J., Liu, B., Ping, J., Chen, B., Wu, H., and Zhang, B., Water, Air, Soil Pollut., 2015, vol. 226, p. 318.

    Google Scholar 

  35. Priego-López, E. and Luque de Castro, M.D., Chromatographia, 2003, vol. 57, p. 513.

    Google Scholar 

  36. Tor, A., Aydin, M.E., and Özcan, S., Anal. Chim. Acta, 2006, vol. 559, p. 173.

    CAS  Google Scholar 

  37. Leng, G., Lui, G., Chen, Y., Yin, H., and Dan, D., J. Sep. Sci., 2012, vol. 35, p. 2796.

    CAS  PubMed  Google Scholar 

  38. Morillo, E., Romero, A.S., Maqueda, C., Madrid, L., Ajmone-Marsan, F., Grcman, H., Davidson, C.M., Hursthouse, A.S., and Villaverde, J., J. Environ. Monit., 2007, vol. 9, p. 1001.

    CAS  PubMed  Google Scholar 

  39. Motelay-Massei, A., Ollivon, D., Garban, B., Teil, M.J., Blanchard, M., and Chevreuil, M., Chemosphere, 2004, vol. 55, p. 555.

    CAS  PubMed  Google Scholar 

  40. Chen, L., Chemosphere, 2005, vol. 60, p. 879.

    CAS  PubMed  Google Scholar 

  41. Maliszewska-Kordybach, B., Smreczak, B., Klimkowicz-Pawlas, A., and Terelak, H., Chemosphere, 2008, vol. 73, p. 1284.

    CAS  PubMed  Google Scholar 

  42. FR.1.31.2007.03548: Procedure for Measuring the Mass Fraction of Polycyclic Aromatic Hydrocarbons in Samples of Soils and Bottom Sediments of Fresh and Marine Water Bodies, Rostov-on-Don, 2007.

  43. Temerdashev, Z.A., Musorina, T.N., Kiseleva, N.V., Eletskii, B.D., and Chervonnaya, T.A., J. Anal. Chem., 2018, vol. 73, no. 12, p. 1154.

    CAS  Google Scholar 

  44. Burlin, M.Yu. and Temerdashev, Z.A., Zh. Anal. Khim., 1998, vol. 53, no. 9, p. 999.

  45. Demircioglu, E., Sofuoglu, A., and Odabasi, M., J. Hazard. Mater., 2011, vol. 186, p. 328.

    CAS  PubMed  Google Scholar 

  46. Masih, A., Masih, J., and Taneja, A., J. Environ. Monit., 2012, vol. 14, p. 172.

    CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 19-43-230003 r_a; experiments were carried out using scientific equipment of the Ecological and Analytical Center of the Kuban State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. A. Temerdashev.

Additional information

Translated by O. Zhukova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temerdashev, Z.A., Musorina, T.N. & Chervonnaya, T.A. Determination of Polycyclic Aromatic Hydrocarbons in Soil and Bottom Sediments by Gas Chromatography–Mass Spectrometry Using Dispersive Liquid–Liquid Microextraction. J Anal Chem 75, 1000–1010 (2020). https://doi.org/10.1134/S1061934820080158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820080158

Keywords:

Navigation