Skip to main content
Log in

Dispersive Liquid–Liquid Microextraction of Pesticides Using Ionic Liquids As Extractants

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

It is found that ionic liquids (ILs) based on imidazole can be used as extractants in the dispersive liquid–liquid microextraction of combined pesticide preparations (imidacloprid, biphenthrin, cypermethrin, malathion, phosalone, and diazinon) followed by their determination by HPLC with electrospray ionization tandem mass spectrometry detection with. The effect of the IL (1-hexyl-3-methylimidazolium tetrafluoborate [C6MIM] [BF4], 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide [C6MIM] [NTf2], 1‑butyl-3-methylimidazolium hexafluorophosphate, [C4MIM] [PF]6) nature and of the dispersive solvent (acetonitrile, methanol, acetone) volume, extraction time, pH of sample solution, and salting-out agent on the efficiency of analyte extraction is studied. It is found that the maximum recoveries (86–99%) of pesticides were reached using acetonitrile as a dispersive solvent and the [C4MIM] [PF]6 ionic liquid as an extractant. The absence of the effect of pH on the distribution of analytes between the water and organic phases confirms the distributive extraction mechanism. The effect of the ionic liquid on the ionization of pesticides is estimated, and conditions of the back extraction of pesticides to hexane are proposed for its reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Wang, Q., Chen, R., Shatner, W., Cao, Y., and Bai, Y., Ultrason. Sonochem., 2019, vol. 51, p. 369.

    Article  CAS  Google Scholar 

  2. Saraji, M. and Boroujeni, M.K., Anal. Bioanal. Chem., 2014, vol. 406, no. 8, p. 2027.

    Article  CAS  Google Scholar 

  3. Smirnova, S.V. and Pletnev, I.V., J. Anal. Chem., 2019, vol. 74, no. 1, p. 1.

    Article  CAS  Google Scholar 

  4. Pletnev, I.V., Smirnova, S.V., and Shvedene, N.V., J. Anal. Chem., 2019, vol. 74, no. 7, p. 625.

    Article  CAS  Google Scholar 

  5. Spietelun, A., Marcinkowski, L., de la Guardia, M., and Namieśnik, J., Talanta, 2014, vol. 119, no. 15, p. 34.

    Article  CAS  Google Scholar 

  6. Escudero, L.B., Grijalba, A.C., Martinis, E.M., and Wuilloud, R.G., Anal. Bioanal. Chem., 2013, vol. 405, no. 24, p. 7597.

    Article  CAS  Google Scholar 

  7. Trujillo-Rodríguez, M.J., Rocío-Bautista, P., Pino, V., and Afonso, A.M., TrAC,Trends Anal. Chem., 2013, vol. 51, p. 87.

    Article  Google Scholar 

  8. Han, D., Tang, B., Lee, Y.R., and Row, K.H., J. Sep. Sci., 2012, vol. 35, no. 21, p. 2949.

    Article  CAS  Google Scholar 

  9. Ventura, S.P.M., e Silva, F.A., Quental, M.V., Mondal, D., Freire, M.G., and Coutinho, J.A.P., Chem. Rev., 2017, vol. 117, no. 10, p. 6984.

    Article  CAS  Google Scholar 

  10. Rykowska, I., Ziemblińska, J., and Nowak, I., J. Mol. Liq., 2018, vol. 259, p. 319.

    Article  CAS  Google Scholar 

  11. Kolobova, E.A., Kartsova, L.A., Kravchenko, A.V., and Bessonova, E.A., Talanta, 2018, vol. 188, p. 183.

    Article  CAS  Google Scholar 

  12. Berthod, A., Ruiz-Ángel, M.J., and Carda-Broch, S., J. Chromatogr. A, 2008, vol. 1184, nos. 1–2, p. 6.

    Article  CAS  Google Scholar 

  13. Kolobova, E.A., Kartsova, L.A., Bessonova, E.A., and Kravchenko, A.V., Analitika Kontrol’, 2017, vol. 21, no. 1, p. 57.

    Google Scholar 

  14. Shashkov, M.V. and Sidel’nikov, V.N., J. Chromatogr. A, 2013, vol. 1309, no. 27, p. 56.

    Article  CAS  Google Scholar 

  15. Patel, D.D. and Lee, J.M., Chem. Rec. (New York, N.Y.), 2012, vol. 12, no. 3, p. 329.

    CAS  Google Scholar 

  16. De Boeck, M., Damilano, G., Dehaen, W., Tytgat, J., and Cuypers, E., Talanta, 2018, vol. 184, p. 369.

    Article  CAS  Google Scholar 

  17. Li, Z., Chen, F., Wang, X., and Wang, C., Biomed. Chromatogr., 2012, vol. 27, no. 2, p. 254.

    Article  Google Scholar 

  18. Liu, Y., Zhao, E., Zhu, W., Gao, H., and Zhou, Z., J. Chromatogr. A, 2009, vol. 1216, no. 6, p. 885.

    Article  CAS  Google Scholar 

  19. He, L., Luo, X., Xie, H., Wang, C., Jiang, X., and Lu, K., Anal. Chim. Acta, 2009, vol. 655, nos. 1–2, p. 52.

    Article  CAS  Google Scholar 

  20. Cruz-Vera, M., Lucena, R., Cárdenas, S., and Valcárcel, M., J. Chromatogr. A, 2009, vol. 1216, no. 37, p. 6459.

    Article  CAS  Google Scholar 

  21. Ravelo-Pérez, L.M., Hernández-Borges, J., Asensio-Ramos, M., and Rodríguez-Delgado, M.A., J. Chromatogr. A, 2009, vol. 1216, no. 43, p. 7336.

    Article  Google Scholar 

  22. Zhou, Q., Bai, H., Xie, G., and Xiao, J., J. Chromatogr. A, 2008, vol. 1188, no. 2, p. 148.

    Article  CAS  Google Scholar 

  23. Zhou, Q., Zhang, X., Xie, G., and Xiao, J., J. Sep. Sci., 2009, vol. 32, no. 22, p. 3945.

    Article  CAS  Google Scholar 

  24. Zhang, J., Gao, H., Peng, B., Li, S., and Zhou, Li., J. Chromatogr. A, 2011, vol. 1218, no. 38, p. 6621.

    Article  CAS  Google Scholar 

  25. Li, S., Gao, H., Zhang, J., Li, Y., Peng, B., and Zhou, Z., J. Sep. Sci., 2011, vol. 34, no. 22, p. 3178.

    Article  CAS  Google Scholar 

  26. Berthod, A., Ruiz-Ángel, M.J., and Carda-Broch, S., J. Chromatogr. A, 2018, vol. 1559, p. 2.

    Article  CAS  Google Scholar 

  27. Kolobova, E.A. and Kartsova, L.A., Analitika Kontrol’, 2018, vol. 22, no. 3, p. 284.

    Google Scholar 

  28. Jensen, M.P., Neuefeind, J., Beitz, J.V., Skanthakumar, S., and Soderholm, L., J. Am. Chem. Soc., 2003, vol. 125, no. 50, p. 15466.

    Article  CAS  Google Scholar 

  29. Dietz, M.L. and Stepinski, D.C., Talanta, 2008, vol. 75, no. 2, p. 598.

    Article  CAS  Google Scholar 

  30. De Boeck, M., Missotten, S., Dehaen, W., Tytgat, J., and Cuypers, E., Forensic Sci. Int., 2017, vol. 274, p. 44.

    Article  CAS  Google Scholar 

  31. Yaroshenko, D.V. and Kartsova, L.A., J. Anal. Chem., 2014, vol. 69, no. 4, p. 311.

    Article  CAS  Google Scholar 

  32. Schwanz, T.G., Carpilovsky, C.K., Weis, G.C.C., and Costabeber, I.H., J. Chromatogr. A, 2019, vol. 1585, p. 10.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Resource Education Center in Chemistry of St. Petersburg State University for the provided equipment.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 18-53-80010 BRICS_t.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Deev.

Additional information

Translated by E. Rykova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessonova, E.A., Deev, V.A. & Kartsova, L.A. Dispersive Liquid–Liquid Microextraction of Pesticides Using Ionic Liquids As Extractants. J Anal Chem 75, 991–999 (2020). https://doi.org/10.1134/S1061934820080043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820080043

Keywords:

Navigation