Skip to main content

Advertisement

Log in

Geographically distant isolates of the persistent southern tomato virus (STV) show very low genetic diversity in the putative coat protein gene

  • Short Report
  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Southern tomato virus (STV) from genus Amalgavirus (Family Amalgaviridae) is a persistent virus infecting tomato crops worldwide. Information on genetic diversity and evolutionary mechanisms for plant persistent viruses are very scarce in comparison with plant acute viruses. In this work, the putative coat protein gene of worldwide STV isolates was analyzed showing very low nucleotide diversity (< 0.0100). Phylogenetic analysis separated STV isolates into two clades, but no correlation was found between genetic and geographic distances. Also, no recombination events among STV isolates were detected. Comparison of synonymous and nonsynonymous substitutions indicated negative selection at the amino acid level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Sabanadzovic S, Valverde RA, Brown JK, Martin RR, Tzanetakis IE (2009) Southern tomato virus: the link between the families Totiviridae and Partitiviridae. Virus Res 140:130

    Article  CAS  PubMed  Google Scholar 

  2. Candresse T, Marais A, Faure C (2015) First report of southern tomato virus on tomatoes in southwest France. Genome 3:e01226

    Google Scholar 

  3. Iacono G, Hernandez-Llopis D, Alfaro-Fernandez A, Davino M, Font MI, Panno S, Galipenso L, Rubio L, Davino S (2015) First report of southern tomato virus in tomato crops in Italy. New Dis Rep 32(27):2044

    Google Scholar 

  4. Padmanabhan C, Zheng Y, Li R, Fei Z, Ling KS (2015) Complete genome sequence of southern tomato virus naturally infecting tomatoes in Bangladesh. Genome Announc. https://doi.org/10.1128/genomeA.01522

    Article  PubMed  PubMed Central  Google Scholar 

  5. Padmanabhan C, Zheng Y, Li R, Sun SE, Zhang D, Liu Y, Fei Z, Ling KS (2015) Complete genome sequence of southern tomato virus identified in China using next-generation sequencing. Genome Announc. https://doi.org/10.1128/genomeA.01226

    Article  PubMed  PubMed Central  Google Scholar 

  6. Verbeek M, Dullemans AM, Espino A, Botella M, Alfaro-Fernández A, Font MI (2015) First report of southern tomato virus in tomato in the Canary Islands. J Plant Pathol 97(2):392

    Google Scholar 

  7. Puchades AV, Carpino C, Alfaro-Fernandez A, Font-San-Ambrosio MI, Davino S, Guerri J, Rubio L, Galipienso L (2017) Detection of southern tomato virus by molecular hybridisation. Ann Appl Biol 171:172

    Article  CAS  Google Scholar 

  8. Elvira-González L, Carpino C, Alfaro-Fernández A, Font-San Ambrosio MI, Peiró R, Rubio L, Galipienso L (2018) A sensitive real-time RT-PCR reveals a high incidence of southern tomato virus (STV) in Spanish tomato crops. Spanish J Agric Res 16:1008

    Article  Google Scholar 

  9. Marquez LM, Redman RS, Rodriguez RJ, Roossinck MJ (2007) A virus in a fungus in a plant: three-way symbiosis required for thermal tolerance. Science 315:513

    Article  CAS  PubMed  Google Scholar 

  10. Roossinck MJ (2011) The good viruses: viral mutualistic symbioses. Nat Rev Microbiol 9:99

    Article  CAS  PubMed  Google Scholar 

  11. Fukuhara T, Tabara M, Koiwa H, Takahashi H (2019) Effect of asymptomatic infection with southern tomato virus on tomato plants. Arch Virol 165(1):11–20

    Article  PubMed  Google Scholar 

  12. Elvira-González L, Medina V, Rubio L, Galipienso L (2019) The persistent southern tomato virus modifies miRNA expression without inducing symptoms and cell ultra-structural changes. Eur J Plant Pathol 156(2):615

    Article  Google Scholar 

  13. Nibert ML, Pyle JD, Firth AE (2016) A 1 ribosomal frameshifting motif prevalent among plant amalgaviruses. Virology 498:201

    Article  CAS  PubMed  Google Scholar 

  14. Krupovic M, Dolja VV, Koonin EV (2015) Plant viruses of the Amalgaviridae family evolved via recombination between viruses with double-stranded and negative-strand RNA genomes. Biol Direct 10:12

    Article  PubMed  PubMed Central  Google Scholar 

  15. Grenfell BT, Pybus OG, Gog JR, Wood JLN, Daly JM, Mumford JA, Holmes EC (2004) Unifying the epidemiological and evolutionary dynamics of pathogens. Science (80-) 303:327

    Article  CAS  Google Scholar 

  16. Acosta-Leal R, Duffy S, Xiong Z, Hammond R, Elena SF (2011) Advances in plant virus evolution: translating evolutionary insights into better disease management. Phytopathology 101:1136

    Article  CAS  PubMed  Google Scholar 

  17. García-Arenal F, Fraile A, Malpica JM (2001) Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39:157

    Article  PubMed  Google Scholar 

  18. Rubio L, Guerri J, Moreno P (2013) Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae. Front Microbiol 4:151

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ferriol I, Ambrós S, da Silva DM, Falk BW, Rubio L (2016) Molecular and biological characterization of highly infectious transcripts from full-length cDNA clones of broad bean wilt virus 1. Virus Res 217:71

    Article  CAS  PubMed  Google Scholar 

  20. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947

    Article  CAS  PubMed  Google Scholar 

  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Efron B, Halloran E, Holmes S (1996) Bootstrap confidence levels for phylogenetic trees. Proc Natl Acad Sci USA 93:7085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pamilo P, Bianchi NO (1993) Evolution of the Zfx and Zfy genes: rates and interdependence between the genes. Mol Biol Evol 10:271

    CAS  PubMed  Google Scholar 

  24. Adams MJ, Antoniw JF (2004) Codon usage bias amongst plant viruses. Arch Virol 149:113

    CAS  PubMed  Google Scholar 

  25. Pond SLK, Posada D, Gravenor MB, Woelk CH, Frost SDW (2006) GARD: a genetic algorithm for recombination detection. Bioinformatics 22:3096

    Article  CAS  Google Scholar 

  26. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fu YX, Li WH (1993) Maximum likelihood estimation of population parameters. Genetics 134:1261

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Martin RCG 2nd (2015) Irreversible electroporation of stage 3 locally advanced pancreatic cancer: optimal technique and outcomes. J Vis Surg 1:4

    PubMed  PubMed Central  Google Scholar 

  29. Vives MC, Rubio L, Galipienso L, Navarro L, Moreno P, Guerri J (2002) Low genetic variation between isolates of Citrus leaf blotch virus from different host species and of different geographical origins. J Gen Virol 83:2587

    Article  CAS  PubMed  Google Scholar 

  30. Watters KE, Choudhary K, Aviran S, Lucks JB, Perry KL, Thompson JR (2017) Probing of RNA structures in a positive sense RNA virus reveals selection pressures for structural elements. Nucleic Acids Res 46:2573

    Article  PubMed Central  Google Scholar 

  31. Davino S, Panno S, Rangel EA, Davino M, Bellardi MG, Rubio L (2012) Population genetics of cucumber mosaic virus infecting medicinal, aromatic and ornamental plants from northern Italy. Arch Virol 157(4):739–745

    Article  CAS  PubMed  Google Scholar 

  32. Walia JJ, Willemsen A, Elci E, Caglayan K, Falk BW, Rubio L (2014) Genetic variation and possible mechanisms driving the evolution of worldwide fig mosaic virus isolates. Phytopathology 104:108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ana Espino (Laboratory of Plant Health, Dirección General de Agricultura, Tenerife, Spain), Purificación Benito (Laboratory of Phytopathology, Cabildo de Gran Canaria, Great Canary Island, Spain), and Ana Alfaro Fernández and María Isabel Font San Ambrosio (Laboratory of Virology, Instituto Agroforestal Mediterráneo, Universistat Politècnica de València, Valencia, Spain) for providing some STV isolates.

Funding

This research was supported by the INIA research project E-RTA2014-00010-C02 co-funded by FEDER 2014‐2020 funds.

Author information

Authors and Affiliations

Authors

Contributions

LEG carried out the experiments and LR performed the biocomputational analysis. LG designed the experimental procedures of this research work and wrote the manuscript as well. All authors read and approved the final manuscript.

Corresponding author

Correspondence to L. Galipienso.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Edited By Seung-Kook Choi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elvira-González, L., Rubio, L. & Galipienso, L. Geographically distant isolates of the persistent southern tomato virus (STV) show very low genetic diversity in the putative coat protein gene. Virus Genes 56, 668–672 (2020). https://doi.org/10.1007/s11262-020-01785-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-020-01785-x

Keywords

Navigation