Skip to main content

Advertisement

Log in

Thermoeconomic evaluation of three proposals for the energy cogeneration unit powered by natural gas, biogas, or syngas

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

This study uses thermoeconomic analyses to compare proposed cogeneration units that use alternative internal combustion engines operating with three possible fuels: natural gas, biogas, or syngas. The technical basis of the study is thermodynamics, which enables the identification of losses and the determination of system efficiency through energy and exergy analyses conducted with the Engineering Equation Solver software. The thermodynamic tools reveal the technical potential of each energy cogeneration unit to assist the economic–technical viability analysis. The study indicates how an energy cogeneration installation with high cooling demand in commercial and industrial enterprises reduces energy costs. In the calculation of the levelized costs of electricity of the cogeneration units, the imputed electricity is the sum of the electricity saved with an absorption chiller with the electrical power produced by motor–generators. This procedure shows that the reuse of heat reduces the cost of electricity, making the hypothetical installations more economically attractive. The levelized costs obtained for syngas and biogas cogeneration units are higher than the levelized cost for the natural gas unit. However, the biogas project stands out since its levelized cost for the cogeneration unit is only six percent higher than the cost obtained for the natural gas cogeneration unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

COP:

Coefficient of performance

EES:

Engineering equation solver

EH:

Heat exchanger

LCOE:

Levelized cost of electricity, $/MWh

LHV:

Lower heating value, MJ/Nm3

\(\dot{C}_{{{\text{in}}}}\) :

Cost rates that enter in the system, $/s

\(\dot{C}\) :

Total cost flow rate, $/s

\(c^{{{\text{ex}}}}\) :

Specific exergetic cost, $/W

\({\text{Cp}}\) :

Specific heat of the mixture, kJ/(kg.K)

\(C_{{{\text{saved}}}}\) :

Specific savings with cogeneration, $/MWh

\(C_{{\text{SpEx chillers}}}\) :

Specific exergetic cost for chiller system, $/W

\(C_{{{\text{SpExCog}}}}\) :

Specific exergetic cost for cogeneration unity, $/W

\(C_{{SpEx{ }Engine}}\) :

Specific exergetic cost for engine system, $/W

\(E\) :

Generated energy, kWh

\(\dot{E}_{{{\text{cooling}}}}\) :

Energy released in the cooling system, kW

\(\dot{E}_{{\text{in,Unity}}}\) :

Input energy rate in the unity, kW

\({\text{Elect}}_{{{\text{saved}}}}\) :

Electricity saved, MWh

\(\dot{E}x\) :

Exergy rate, kW

\(\dot{E}x_{{{\text{chiller}},{\text{ exhaust}}}}\) :

Exergy rate used in the exhaust gas chiller, kW

\(\dot{E}x_{{{\text{chiller}},{\text{ HT}}}}\) :

Exergy rate used in the hot water chiller, kW

\(\dot{E}x_{{{\text{Lost}},{\text{ HT}}}}\) :

Exergy loss rate in the HT system, kW

\(\dot{E}x_{{{\text{Lost}},{\text{ Gas}}}}\) :

Exergy loss rate in the exhaust gas system, kW

\(\dot{E}x_{{{\text{OthLoss}},{\text{Destroyed}}}}\) :

Other destruction rates and loss of exergy, kW

\({\text{e}}_{{\text{M}}}^{{\sim {\text{ch}}}}\) :

Chemical exergy of fuel, MJ/mol

\(e_{i}^{{\sim {\text{ch}}}}\) :

Specific exergy of the constituent, MJ/mol

\(F\) :

Fuel expenses, $ (USD)

HT:

High-temperature cooling water system

\(I\) :

Investment costs, $ (USD)

\({\text{LCOE}}_{{{\text{electCog}}}}\) :

Levelized costs of energy cogeneration considering the electricity saved as an output, $/MWh

\({\text{LCOE}}_{{{\text{energyCog}}}}\) :

Levelized costs of energy cogeneration considering the cooling energy as an output, $/MWh

LT:

Low-temperature cooling water system

\(M\) :

Maintenance expenses, $ (USD)

\({\tilde{\text{m}}}\) :

Total mass of the gas, g/mol

\(\dot{m}\) :

Mass flow rate, kg/s

\(\dot{m}_{{{\text{fuel}}}}\) :

Fuel flow rate, m3/s

\(Mi\) :

Molar mass, g/mol

\(\dot{m}_{5,6}\) :

Chilled water flow rate produced by the exhaust gas chiller, m3/h

\(\dot{m}_{15,16}\) :

Cooling water flow rate of the exhaust gas chiller, m3/h

\(P_{{{\text{cooling}}}}\) :

Chiller cooling power or capacity, kW

\(P_{{{\text{electric}}}}\) :

Electric power, kW

\(P_{{{\text{Motor}}}}\) :

Total engine power, MW

\(\dot{Q}\) :

Heat rate, kW

\(R\) :

Universal gas constant, MJ/mol.K

\(r\) :

Annual interest rate

\(T\) :

Dead state temperature, K

\(T_{0}\) :

Dead state temperature, K

\({\text{T}}_{16}\) :

Inlet cooling water temperature of the exhaust gas chiller, °C

\({\text{T}}_{15}\) :

Outlet cooling water temperature of the exhaust gas chiller, °C

\(\dot{W}_{{{\text{net}}}}\) :

Net electrical power rate, MW

\(\dot{W}{ }_{{{\text{c.elec}}}}\) :

Rate of electricity consumption by the chiller, kW

\({\text{x}}_{{\text{i}}}\) :

Molar fraction of the constituent

\({\text{y}}_{{\text{i}}}\) :

Activity coefficient

\(\dot{Z}\) :

Expenses rates of maintenance, operation, and investments, $/s

\(\dot{\beta }\) :

Specific chemical exergy, MJ/Nm3

\(\varepsilon_{{{\text{cogeneration}}}}\) :

Exergy efficiency for cogeneration

\(\varepsilon_{{{\text{exerg}}}}\) :

Exergy efficiency

\(\varepsilon_{{{\text{electric}}}}\) :

Exergy efficiency for generated electricity

\(\varepsilon_{{{\text{f.law}}}}\) :

First-law efficiency

\(\eta { }_{{{\text{electric}}}}\) :

First-law efficiency for electricity

\(\eta { }_{{{\text{cogeneration}}}}\) :

First-law efficiency for cogeneration

\(\varphi\) :

Chemical exergy correction factor

\({\text{absp}}\) :

Absorption chiller

\({\text{air}} - {\text{sc}}\) :

Stoichiometric air

\({\text{chillerEx}}\) :

Exhaust gas chiller

\({\text{chillerHT}}\) :

Hot water chiller

\({\text{chillerTotal}}\) :

Hot water and exhaust gas chiller

\({\text{comp}}\) :

Compression chiller

\(ct\) :

Cogeneration unit

\({\text{cw}}\) :

Chilled water

\({\text{electrTotal}}\) :

Total of electricity

\({\text{exhaust}}\) :

Exhaust gas system

\({\text{fixed}}\) :

Fixed cost

\(g\) :

Outlet combustion gas

\({\text{i}}\) :

Initial state

\({\text{in}}\) :

Inlet

\(in,HT\) :

Inlet of the high-temperature cooling water system

\({\text{in,LT}}\) :

Inlet of the low-temperature cooling water system

\({\text{jacket}}\) :

Water jacket system

\({\text{out,HT}}\) :

Outlet of the high-temperature cooling water system

\({\text{out,LT}}\) :

Outlet of the low-temperature cooling water system

\(O\& M\) :

Operation and maintenance

\({\text{pu}}\) :

Power unit

\({\text{surr}}\) :

Surrounding

\(t\) :

Time, in years

\({\text{Variable}}\) :

Variable cost

References

  1. Empresa de pesquisa energética (2016) Energia Renovável: hidráulica, Biomassa, Eólica, Solar, Oceânica. EPE. https://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivos/publicacao-172/Energia%2520Renov%C3%A1vel%2520-%2520Online%252016maio2016.pdf. Accessed 17 April 2017

  2. Chaves LI (2012) Microgeração de energia elétrica com gás de síntese. Dissertation, Universidade Estadual do Oeste do Paraná

  3. Qian Y, Sun S, Ju D, Shan X, Lu X (2017) Review of the state-of-the-art of biogas combustion mechanisms and applications in internal combustion engines. Renew Sust Energ Rev 69:50–58. https://doi.org/10.1016/j.rser.2016.11.059

    Article  Google Scholar 

  4. Basu P (2013) Biomass gasification, pyrolysis and torrefaction - practical design and theory. Elsevier, London

    Google Scholar 

  5. Lora EES, Venturini OJ (2012) Biocombustíveis. Editora Interciência, Rio de Janeiro

    Google Scholar 

  6. Rajvanshi AK (1986) Biomass gasification. In: Goswami Y (ed) Alternative energy in agriculture, 1st edn. CRC Press, London, pp 82–102

    Google Scholar 

  7. Bahiagás (2005) Gás natural: benefícios ambientais no Estado da Bahia, Salvador: Solisluna Design e Editora. https://www.bahiagas.com.br/download/livro_gas_natural.pdf. Accessed 17 April 2017

  8. Martínez JD, Mahkamov K, Andrade RV, Lora EES (2012) Syngas production in downdraft biomass gasifiers and its application using internal combustion engines. Renew Energy 38(1):1–9. https://doi.org/10.1016/j.renene.2011.07.035

    Article  Google Scholar 

  9. Alves LG (2007) Análise Exergoeconômica e Otimização de Diferentes Processos de Produção de Hidrogênio a Partir de Gás Metano. Phd Thesis, Universidade Estadual de Campinas

  10. Nadaleti WC, Przybyla G (2018) Emissions and performance of a spark-ignition gas engine generator operating with hydrogen-rich syngas, methane and biogas blends for application in southern Brazilian rice industries. Energy 154:38–51. https://doi.org/10.1016/j.energy.2018.04.046

    Article  Google Scholar 

  11. Zare AD, Saray RK, Mirmasoumi S, Bahlouli K (2019) Optimization strategies for mixing ratio of biogas and natural gas co-firing in a cogeneration of heat and power cycle. Energy 181:635–644. https://doi.org/10.1016/j.energy.2019.05.182

    Article  Google Scholar 

  12. Chang CT, Costa M, Villetta ML, Macaluso D, Piazzullo D, Vanoli L (2019) Thermo-economic analyses of a Taiwanese combined CHP system fuelled with syngas from rice husk gasification. Energy 167:766–780. https://doi.org/10.1016/j.energy.2018.11.012

    Article  Google Scholar 

  13. Zareh AD, Saray RK, Mirmasoumi S, Bahlouli K (2018) Extensive thermodynamic and economic analysis of the cogeneration of heat and power system fueled by the blend of natural gas and biogas. Energy Convers Manag 164:329–343. https://doi.org/10.1016/j.enconman.2018.03.003

    Article  Google Scholar 

  14. Villetta ML, Costa M, Cirillo D, Massarotti N, Vanoli L (2018) Performance analysis of a biomass powered micro-cogeneration system based on gasification and syngas conversion in a reciprocating engine. Energy Convers Manag 175:33–48. https://doi.org/10.1016/j.enconman.2018.08.017

    Article  Google Scholar 

  15. Javanshir N, Mahmoudi S, Kordlar MA, Rosen MA (2020) Energy and cost analysis and optimization of a geothermal-based cogeneration cycle using an ammonia-water solution: thermodynamic and thermoeconomic viewpoints. Sustainability 12(2):484–508. https://doi.org/10.3390/su12020484

    Article  Google Scholar 

  16. Caterpillar, CG170-12/1200 kWe. https://www.cat.com/en_ZA/products/new/power-systems/electric-power/gas-generator-sets/18487630.html. Accessed 17 April 2017

  17. Santo DBE, Gallo WLR (2017) Utilizing primary energy savings and exergy destruction to compare centralized thermal plants and cogeneration/trigeneration systems. Energy 120:785–795. https://doi.org/10.1016/j.energy.2016.11.130

    Article  Google Scholar 

  18. Baratieri M, Bosio B, Grigiante M, Longo GA (2009) The use of biomass syngas in IC engines and CCGT plants: a comparative analysis. Appl Therm Eng 29(16):3309–3318. https://doi.org/10.1016/j.applthermaleng.2009.05.003

    Article  Google Scholar 

  19. Thermax, Trigenie. Multi Energy Vapour Absorption Machines, 40 TR – 4000 TR. https://www.koohsaran.com/Editor/UploadFiles/Catalog/multi_energi.pdf Accessed 17 April 2017

  20. Thermax, Cogenie ProChill. Hot Water Driven Vapor Absorption Machine. https://www.tranebelgium.com/files/product-doc/92/fr/Hot-water.pdf. Accessed 17 April 2017

  21. Montesino ÁU, Álvaro AJ, Martín JR, Carlier RN (2016) Exergy Analysis of a syngas-fueled combined cycle with chemical-looping combustion and CO2 sequestration. Entropy 18(9):314. https://doi.org/10.3390/e18090314

    Article  Google Scholar 

  22. The Biogas. Biogas Composition. https://www.biogas-renewable-energy.info/biogas_composition.html. Accessed 18 April 2017

  23. Kotas TJ (2013) The exergy method of thermal plant analysis. Butterworth-Heinemann, Tiptree

    Google Scholar 

  24. Ptasinski KJ (2016) Efficiency of biomass energy: an exergy approach to biofuels, power, and biorefineries. John Wiley & Sons, Hoboken

    Google Scholar 

  25. Abbaspour M, Saraei SR (2014) An innovative design and cost optimization of a trigeneration (combined cooling, heating and power) system. Int J Environ Res 8(4):971–978. https://doi.org/10.22059/IJER.2014.789

    Article  Google Scholar 

  26. Schöpfer M (2015) Absorption chillers: their feasibility in district heating networks and comparison to alternative technologies. Dissertation, Instituto Superior Técnico

  27. Lian ZT, Chua KJ, Chou SK (2010) A thermoeconomic analysis of biomass energy for trigeneration. Appl Energy 87(1):84–95. https://doi.org/10.1016/j.apenergy.2009.07.003

    Article  Google Scholar 

  28. Gebhardt M, Kohl H, Steinrötter Th (2002) Preisatlas Ableitung von Kostenfunktionen für Komponenten der rationellen Energienutzung. Institut für Energie und Umwelttechnik eV (IUTA), Duisburg

    Google Scholar 

  29. Krich K, Augenstein D, Batmale JP, Benemann J, Rutledge B, Salour D (2005) Biomethane from dairy waste: a sourcebook for the production and use of renewable natural gas in California. Western United Dairymen, Modesto

    Google Scholar 

  30. Wickwire S (2007) Biomass Combined Heat and Power catalog of technologies. EPA, Washington DC

    Google Scholar 

  31. Villalba LCO, Acevedo ER (2014) Technical and economical assessment of power generation technologies firing syngas obtained from biosolid gasification. Prod + Limpia 9(1):31–43

    Article  Google Scholar 

  32. Energy Information Administration (2016) Capital Cost Estimates for Utility Scale Electricity Generating Plants, November, US Department Energy, p 1–201. EIA. https://www.eia.gov/analysis/studies/powerplants/capitalcost/pdf/capcost_assumption.pdf Accessed 17 April 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Álisson Bandeira Santos.

Additional information

Communicated by Monica Carvalho, PhD.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Melo Freire, R.M., Santos, A.Á.B. & Almeida, A.G.S. Thermoeconomic evaluation of three proposals for the energy cogeneration unit powered by natural gas, biogas, or syngas. J Braz. Soc. Mech. Sci. Eng. 42, 440 (2020). https://doi.org/10.1007/s40430-020-02526-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02526-9

Keywords

Navigation