Skip to main content
Log in

LIPOID SPC-3-Based Coprecipitates for the Enhancement of Aqueous Solubility and Permeability of Ranolazine

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

The study was aimed at exploring the feasibility of LIPOID SPC-3 as a coprecipitate carrier to enhance the aqueous solubility and permeability of ranolazine, a BCS class II drug.

Methods

LIPOID SPC-3-based coprecipitates of ranolazine (RNZ-SPC-CP) were developed using the solvent method. The developed formulation was physico-chemically characterized using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), powder x-ray diffractometry (PXRD), and drug content. Functional evaluation of RNZ-SPC-CP formulations was carried out by solubility analysis, in vitro dissolution studies, fed vs. fasted state dissolution comparison, and ex vivo permeation studies.

Results

The SEM studies revealed dissimilar morphological characteristics of pure ranolazine, LSPC-3, and RNZ-SPC-CP formulations. The physico-chemical analysis confirmed the formation of the coprecipitate. Optimized RNZ-SPC-CP1 demonstrated a noteworthy increase (~ 18-fold) in water solubility (~ 92.23 ± 1.02 μg/mL) over that of pure ranolazine (~ 4.94 ± 0.06 μg/mL) and physical mixture (PM) (~ 30.21 ± 2.12 μg/mL). Optimized RNZ-SPC-CP1 appreciably enhanced the rate and extent of ranolazine dissolution (~ 85%), compared with that of pure ranolazine (~ 21%) and PM (~ 35%). Similarly, the permeation rate of ranolazine from optimized RNZ-SPC-CP1 formulation was found to be enhanced significantly (~ 83%) over that of pure ranolazine (~ 19%) and PM (~ 32%). In the fed state, the RNZ-SPC-CP1 improved the rate and extent of ranolazine dissolution, compared with those of fasted state dissolution.

Conclusions

The results conclude that RNZ-SPC-CP could be used as a promising approach for enhancing the aqueous solubility and permeation rate of ranolazine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rayner-Hartley E, Sedlak T. Ranolazine: a contemporary review. J American Hear Assoc. 2016;5(3):1–8. https://doi.org/10.1161/JAHA.116.003196.

    Article  Google Scholar 

  2. Wolff AA, Baker F, Landridge J. Sustained release ranolazine formulations. United State Patent, US 6396062B1.

  3. Reddy BM, Weintraub HS, Schwartzbard AZ. Ranolazine: a new approach to treating an old problem. Tex Heart Inst J. 2010;37(6):641–7.

    PubMed  PubMed Central  Google Scholar 

  4. Jerling M. Clinical pharmacokinetics of ranolazine. Clin Pharmacokinet. 2006;45(5):469–91.

    Article  CAS  Google Scholar 

  5. Bidada JP, Gonjari ID, Raut CS, Bhutada CJ. Novel spectroscopic method for estimation of ranolazine in bulk and pharmaceutical dosage forms. Der Pharma Chemica. 2011;3(2):1–4.

    CAS  Google Scholar 

  6. Murthy TEGK, Mukkala VP, Suresh Bhau VV. Formulation and evaluation of ranolazine extended-release tablet: influence of polymers. Asian J Pharm. 2011;5:162–6. https://doi.org/10.4103/0973-8398.91992.

    Article  CAS  Google Scholar 

  7. Gowda DV, Gowrav MP, Gandadharappa HV, Khan MS. Preparation and evaluation of mixture of Eudragit and ethylcellulose microparticles loaded with ranolazine for controlled release. J Young Pharm. 2011;3:189–96.

    Article  CAS  Google Scholar 

  8. Rajkumar K, Bolmol US, Reddy ER, Sowjanya PS, Anusha P, Reddy KR. Formulation and evaluation of floating microsphere of ranolazine for the treatment of chronic angina. Int J Pharm Sci Nanotech. 2013;6(3):2137–44.

    CAS  Google Scholar 

  9. Bhosale PV, Ranade AN, Awahad C. Formulation and evaluation of extended release tablet of ranolazine. Inventi Rapid: Pharm Tech. 2015;3:1–5.

    Google Scholar 

  10. Habib MJ, Azadi M, Akogyeram CO. Enhancement of dissolution rate of probenecid in phospholipids coprecipitates. Drug Dev Ind Pharm. 1992;18(10):1117–25. https://doi.org/10.3109/03639049209069319.

    Article  CAS  Google Scholar 

  11. Habib MJ, Akohyeram C, Ahmadi B. Improved dissolution of indomethacin with phospholipids – I. Drug Dev Ind Pharm. 1993;19(4):499–505. https://doi.org/10.3109/03639049309063207.

    Article  CAS  Google Scholar 

  12. El-Zein H, Riad L, Abd El-Bary A. Enhancement of carbamazepine dissolution: in vitro and in vivo evaluation. Int J Pharm. 1998;168:209–20. https://doi.org/10.1016/S0378-5173(98)00093-3.

    Article  CAS  Google Scholar 

  13. Hussain MD, Saxena V, Brausch JF, Talukder RM. Ibuprofen-phospholipids solid dispersion: improved dissolution and gastric tolerance. Int J Pharm. 2012;422:290–4. https://doi.org/10.1016/j.ijpharm.2011.11.011.

    Article  CAS  PubMed  Google Scholar 

  14. Hu Q, Choi DS, Chokshi H, Shah N, Sandhu H. Highly efficient miniaturized coprecipitation screening (MiCoS) for amorphous solid dispersion formulation development. Int J Pharm. 2013;450:53–62. https://doi.org/10.1016/j.ijpharm.2013.04.040.

    Article  CAS  PubMed  Google Scholar 

  15. MS EYSR, Abdallah OY. Lyophilized phytosomal nanocarriers as platforms for enhanced diosmin delivery: optimization and ex vivo permeation. Int J Nanomedicine. 2013;8:2385–97. https://doi.org/10.2147/IJN.S45231.

    Article  Google Scholar 

  16. Barry J, Fritz M, Brender JR, Smith PES, Lee D-K, Ramamoorthy A. Determining the effects of lipophilic drugs on membrane structure by solid-state NMR spectroscopy: the case of the antioxidant curcumin. J Am Chem Soc. 2009;131(12):4490–8. https://doi.org/10.1021/ja809217u.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Venkataram S, Rogers JA. Characteristics of drug phospholipid coprecipitates I: physical properties and dissolution behavior of griseofulvin-dimyristoyl phosphatidylcholine systems. J Pharm Sci. 1984;73:757–61. https://doi.org/10.1002/jps.2600730613.

    Article  CAS  PubMed  Google Scholar 

  18. Biswas M, Akogyeram CO, Scott KR, Potti GK, Gallelli JF, Habib MJ. Development of carbamazepine: phospholipid solid dispersion formulations. J Control Release. 1993;23:239–45. https://doi.org/10.1016/0168-3659(93)90005-P.

    Article  CAS  Google Scholar 

  19. Telange DR, Bhagat SB, Patil AT, Umekar MJ, Pethe AM, Raut NA, et al. Glucosamine HCl-based solid dispersions to enhance the biopharmaceutical properties of acyclovir. J Excipients Food Chem. 2019;10(3):65–81.

    Google Scholar 

  20. Telange DR, Nirgulkar SB, Umekar MJ, Patil AT, Pethe AM, Bali NR. Enhanced transdermal permeation and anti-inflammatory potential of phospholipids complex-loaded matrix film of umbelliferone: formulation development, physico-chemical and functional characterization. Eur J Pharm Sci. 2019;131:23–38. https://doi.org/10.1016/j.ejps.2019.02.006.

    Article  CAS  PubMed  Google Scholar 

  21. Telange DR, Patil AT, Pethe AM, Fegade H, Anand S, Dave VS. Formulation and characterization of an apigenin-phospholipid phytosome (APLC) for improved solubility, in vivo bioavailability, and antioxidant potential. Eur J Pharm Sci. 2017;108:36–49. https://doi.org/10.1016/j.ejps.2016.12.009.

    Article  CAS  PubMed  Google Scholar 

  22. Dhore PW, Dave VS, Saoji SD, Gupta D, Raut NA. Influence of carrier (polymer) type and drug-carrier-ratio in the development of amorphous dispersions for solubility and permeability enhancement of ritonavir. J Excipients and Food Chem. 2017;8(3):1–18.

    Google Scholar 

  23. Choudhary A, Rana AC, Aggarwal G, Kumar V, Zakir F. Development and characterization of an atorvastatin solid dispersion formulation using skimmed milk for improved oral bioavailability. Acta Pharm Sin B. 2012;2(4):421–8. https://doi.org/10.1016/j.apsb.2012.05.002.

    Article  CAS  Google Scholar 

  24. Al-Hamidi H, Edwards AA, Mohammad MA, Nokhodchi A. To enhance dissolution rate of poorly water-soluble drugs: glucosamine hydrochloride as a potential carrier in solid dispersion formulations. Colloids Surf B: Biointerfaces. 2010;76(1):170–8. https://doi.org/10.1016/j.colsurfb.2009.10.030.

    Article  CAS  PubMed  Google Scholar 

  25. Klein S. The use of biorelevant dissolution media to forecast the in vivo performance of a drug. AAPS J. 2010;12(3):397–406. https://doi.org/10.1208/s12248-010-9203-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dixit P, Jain DK, Dumbwani J. Standardization of an ex vivo method for determination of intestinal permeability of drugs using everted rat intestine apparatus. J Pharmacol Toxicol Methods. 2012;65(1):13–7. https://doi.org/10.1016/j.vascn.2011.11.001.

    Article  CAS  PubMed  Google Scholar 

  27. Dhore PW, Dave VS, Saoji SD, Bobde YS, Mack C, Raut NA. Enhancement of the aqueous solubility and permeability of a poorly water soluble drug ritonavir via lyophilized milk-based solid dispersions. Pharm Dev Technol. 2017;22(1):90–102. https://doi.org/10.1080/10837450.2016.1193193.

    Article  CAS  PubMed  Google Scholar 

  28. Telange DR, Denge RP, Patil RP, Umekar MJ, Gupta SV, Dave VS. Pentaerythritol as an excipients/solid –dispersion carrier for improved solubility and permeability of ursodeoxycholic acid. J Excipients Food Chem. 2018;9(3):80–95.

    Google Scholar 

  29. Semalty A, Semalty M, Singh D, Rawat MSM. Development and physicochemical evaluation of pharmacosomes of diclofenac. Acta Pharma. 2009;59:335–44. https://doi.org/10.2478/v10007-009-0023-x.

    Article  CAS  Google Scholar 

  30. Semalty A, Semalty M, Singh D, Rawat MSM. Preparation and characterization of phospholipids complexes of naringenin for effective drug delivery. J Incl Phenom Macrocycl Chem. 2010;67:253–60. https://doi.org/10.1007/s10847-009-9705-8.

    Article  CAS  Google Scholar 

  31. Rarokar NR, Saoji SD, Raut NA, Taksande JB, Khedekar PB, Dave VS. Nanostructured cubosomes in a thermoresponsive depot system: an alternate approach for the controlled delivery of docetaxel. AAPS PharmSciTech. 2016;17:436–45. https://doi.org/10.1208/s12249-015-0369-y.

    Article  CAS  PubMed  Google Scholar 

  32. LeFevre ME, Olivo R, Vanderhoff JW, Joel DD. Accumulation of latex in Peyer’s patches and its subsequent appearance in villi and mesenteric lymph nodes. Proc Soc Exp Biol Med. 1978;159:298–302.

    Article  CAS  Google Scholar 

  33. Savic R, Luo L, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science. 2003;300(5619):615–8. https://doi.org/10.1126/science.1078192.

    Article  CAS  PubMed  Google Scholar 

  34. Hou Z, Li Y, Huang Y, Zhou C, Lin J, Wang Y, et al. Phytosomes loaded with mitomycin c–soybean phosphatidylcholine complex developed for drug delivery. Mol Pharm. 2013;10:90–101. https://doi.org/10.1021/mp300489p.

    Article  CAS  PubMed  Google Scholar 

  35. Cai X, Luan Y, Jiang Y, Song A, Shao W, Li Z, et al. Huperzine A-phospholipid complex-loaded biodegradable thermosensitive polymer gel for controlled drug release. Int J Pharm. 2012;433:102–11. https://doi.org/10.1016/j.ijpharm.2012.05.009.

    Article  CAS  PubMed  Google Scholar 

  36. Ruan J, Liu J, Zhu D, Gong T, Yang F, Hao X, et al. Preparation and evaluation of self-nanoemulsified drug delivery systems (SNEDDSs) of matrine based on drug-phospholipid complex technique. Int J Pharm. 2010;386:282–90. https://doi.org/10.1016/j.ijpharm.2009.11.026.

    Article  CAS  PubMed  Google Scholar 

  37. Li J, Liu P, Liu J-P, Yang JK, Zhang W-L, Fan Y-Q, et al. Bioavailability and foam cells permeability enhancement of Salvianolic acid B pellets based on drug–phospholipids complex technique. Eur J Pharm Biopharm. 2012;83:76–86. https://doi.org/10.1016/j.ejpb.2012.09.021.

    Article  CAS  PubMed  Google Scholar 

  38. Semalty A, Semalty M, Singh D, Rawat MSM. Phyto-phospholipid complex of catechin in value added herbal drug delivery. J Incl Phenom Macrocycl Chem. 2012;73:377–86. https://doi.org/10.1007/s10847-011-0074-8.

    Article  CAS  Google Scholar 

  39. Yue PF, Zhang WJ, Yuan HL, Yang M, Zhu WF, Cai PL, et al. Process optimization, characterization and pharmacokinetic evaluation in rats of ursodeoxycholic acid-phospholipid complex. AAPS PharmSciTech. 2008;9:322–9. https://doi.org/10.1208/s12249-008-9040-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen T, Ynag J, Chen L, Qian X, Zhang Q, Fu T, et al. Use of ordered mesoporous silica-loaded phyto-phospholipid complex for BCS IV class plant drug to enhance oral bioavailability: a case report of tanshinone IIA. RSC Adv. 2016;6:115010–20. https://doi.org/10.1039/C6RA22778C.

    Article  CAS  Google Scholar 

  41. Singh D, Rawat MSM, Semalty A, Semalty M. Emodin–phospholipid complex: a potential of herbal drug in the novel drug delivery system. J Therm Anal Calorim. 2012;108:289–98. https://doi.org/10.1007/s10973-011-1759-3.

    Article  CAS  Google Scholar 

  42. Singh D, Rawat MSM, Semalty A, Semalty M. Quercetin-phospholipid complex: an amorphous pharmaceutical system in herbal drug delivery. Curr Drug DisTechnol. 2012;9:17–24. https://doi.org/10.2174/157016312799304507.

    Article  CAS  Google Scholar 

  43. Jo K, Cho JM, Kim EK, Kim HC, Kim H, Lee J. Enhancement of aqueous solubility and dissolution of celecoxib through phosphatidylcholine-based dispersion system solidified with adosrbent carriers. Pharmaceutics. 2019;11(1):2–14. https://doi.org/10.3390/pharmaceutics11010001.

    Article  CAS  Google Scholar 

  44. Singh RP, Gangadharappa HV, Mruthunjaya K. Phospholipids: unique carriers for drug delivery systems. J Drug Deliv Sci Technol. 2017;39:166–79. https://doi.org/10.1016/j.jddst.2017.03.027.

    Article  CAS  Google Scholar 

  45. Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm. 2000;50:47–60. https://doi.org/10.1016/s0939-6411(00)00076-x.

    Article  CAS  PubMed  Google Scholar 

  46. Raman S, Polli JE. Prediction of positive food effect: bioavailability enhancement of BCS class II drugs. Int J Pharm. 2016;506(1–2):110–5. https://doi.org/10.1016/j.ijpharm.2016.04.013.

    Article  CAS  PubMed  Google Scholar 

  47. Fong SYK, Ibisogly A, Bauer-Brandl A. Solubility enhancement of BCS Class II drug by solid phospholipids dispersions: spray drying versus freeze-drying. Int J Pharm. 2015;496(2):382–91. https://doi.org/10.1016/j.ijpharm.2015.10.029.

    Article  CAS  PubMed  Google Scholar 

  48. Saoji SD, Belgamwar VS, Dharashivkar SS, Rode AA, Mack C, Dave VS. The study of the influence of formulation and process variables on the functional attributes of simvastatin–phospholipid complex. J Pharm Innov. 2016;11:264–78. https://doi.org/10.1007/s12247-016-9256-7.

    Article  Google Scholar 

  49. Chen JM, Zhang L, Yuet KP, Liao G, Rhee JW, Langer R. PLGA-lecithin-PEG core shell nanoparticles for controlled drug delivery. Biomaterials. 2009;30(8):1627–34. https://doi.org/10.1016/j.biomaterials.2008.12.013.

    Article  CAS  Google Scholar 

  50. Fricekr G, Kromp T, Wendel A, Blume A, Zirkel J, Rebmann H. Phospholipids and lipid-based formulations in oral drug delivery. Pharm Res. 2010;27(8):1469–86. https://doi.org/10.1007/s11095-010-0130-x.

    Article  CAS  Google Scholar 

  51. Xie J, Li Y, Song L, Pan Z, Ye S, Hou Z. Design of a novel curcumin-soybean phosphatidylcholine complex-based targeted drug delivery systems. Dug Deliv. 2017;24(1):707–19. https://doi.org/10.1080/10717544.2017.1303855.

    Article  CAS  Google Scholar 

  52. Yu F, Ao M, Zhang X, Xia J, Li Y, Li D, et al. PEG-lipid-PLGA hybrid nanoparticles loaded with berberine-phospholipids complex to facilitate the oral delivery efficiency. Drug Deliv. 2017;24(1):825–33. https://doi.org/10.1080/10717544.2017.1321062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The corresponding author acknowledges Dr. Shirish P. Jain, Principal, Rajarshi Shahu College of Pharmacy, Buldhana, for providing the technical support for completing the manuscript on time.

CRediT Authorship Contribution Statement

Darshan Telange: conceptualization, investigation, methodology, writing—original draft, writing—review and editing. Sarita Ukey: methodology, investigation, data curation. Atul Hemke: validation, data curation. Milind Umekar: project administration, resources. Anil Pethe: conceptualization, supervision, investigation, visualization. Prashant Kharkar: investigation, methodology, writing—original draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darshan R. Telange.

Ethics declarations

The Institutional Animal Ethical Committee of Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, reviewed and sanctioned the protocol (SKBCOP/IAEC/201819, dated August 19, 2018). The study was performed under the supervision of guidelines suggested by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Telange, D.R., Ukey, S.A., Hemke, A.T. et al. LIPOID SPC-3-Based Coprecipitates for the Enhancement of Aqueous Solubility and Permeability of Ranolazine. J Pharm Innov 16, 643–658 (2021). https://doi.org/10.1007/s12247-020-09477-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12247-020-09477-7

Keywords

Navigation