Skip to main content
Log in

Trade-off Between Cost and Safety To Cope with Station Blackout in A PWR in A Deregulated Electricity Market

  • Original Article
  • Published:
Journal of Electrical Engineering & Technology Aims and scope Submit manuscript

Abstract

In this paper a close solution is presented to determine the trade-off between cost and safety to cope with station blackout (SBO) in Pressurized Water Reactors (PWRs). To compute the profit of each generation unit, a Supply Function Equilibrium (SFE) model swhich considers carbon tax is used in a uniform electricity market. A hierarchical heuristic method is applied for decision making on safety improvement of Nuclear Power Plants (NPPs). In this method the break-even point is used as a criterion to make a decision on comparing cost of safety improvement and profit of NPP in a deregulated electricity market. This method is applied in a case of adding an Emergency Water Supply (EWS) and an Emergency Diesel Generator (EDG) to a NPP where impacts of its investment cost and its profit are investigated. The achieved results show that the break-even point of investment cost and net profit of the NPP by adding the EDG is one month later than NPP with addition of EWS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

i,j:

Bus number i, j = {1, 2…,M}

t :

Hours

y :

Year

f :

Generating firm

N :

Set of all buses

S :

Set of generation units

D :

Set of consumers

T :

Set of hours in the understudy period

\({u}_{f}\) :

Set of unbound generating units of firm f

F:

Set of generating firms

\({S}_{f}\) :

Set of generating units of GENCO f

\({a}_{i}\) :

Cost function parameter of generator i in $/MWh

\({k}_{i}\) :

Cost function parameter of generator i in $/MWh

\({b}_{i}\) :

Cost function parameter of generator i in $/MW2h

\({\alpha }_{i}^{(t)}\) :

Bid of generator i at hour t in $/MWh

\({c}_{i}^{(t)}\) :

Price function parameter of demand i at hour t in $/MWh

\({d}_{i}^{(t)}\) :

Price function parameter of demand i at hour t in $/MW2h

\({\rho }_{i}\) :

Emission intensity of generator i in ton/MWh

\({\gamma }^{0}\) :

Carbon tax first-order parameter in $/ton

β:

Carbon tax second-order parameter in ($/ton)/(ton/h)

\({P}_{S}^{(0)}\) :

Vector of generation powers at hour t = 0

\({R}_{y}\) :

Net cash flow in $

\({P}_{{S}_{i}}^{max}\) :

Upper active power generation limits of unit i

\({P}_{{S}_{i}}^{min}\) :

Lower active power generation limits of unit i

\({U}_{{rr}_{i}}\) :

Upper ramp rate limit of unit i in perunit/h

\({D}_{{rr}_{i}}\) :

Lower ramp rate limit of unit i in perunit/h

r :

Discount rate

h:

8760 h

Y:

Total number of periods

\({P}_{{S}_{i}}^{(t)}\) :

Active power generation outputs at bus i at hour t in MW

\({P}_{{D}_{i}}^{(t)}\) :

Active power consumption at bus i at hour t in MW

\({J}_{ISO}\) :

Social welfare, ISO’s objective function in $

\({\pi }_{f}\) :

Profit of GENCO f in $

\({\lambda }^{(t)}\) :

Market clearing price at hour t in $/MW2h

\({{\mu }^{{(t)}^{max}}}\) :

Dual variables of max generation limits at hour t in $/MW2h

\({{\varvec{\upmu}}}^{{(t)}^{min}}\) :

Dual variables of min generation limits at hour t in $/MW2h

\({\boldsymbol{\epsilon}}^{{(t)}^{max}}\) :

Dual variables of ramp-up rate limits at hour t in $/MW2h

\({\boldsymbol{\epsilon}}^{{(t)}^{min}}\) :

Dual variables of ramp-down rate limits at hour t in $/MW2h

\({\vartheta }_{i}^{(t)}\) :

Dual variables of limit of active power consumption related to bus i at time t

\({\vartheta }_{i}^{{(t)}^{max}}\) :

Dual variables of upper limit of active power consumption related to bus i at time t

\({\vartheta }_{i}^{{(t)}^{min}}\) :

dual variables of lower limit of active power consumption related to bus i at time t

CT:

Carbon tax function in $

xy :

Complementarity condition between x and y

ζ:

Iteration counter

References

  1. The Fukushima Daiichi Accident (2015) International Atomic Energy Agency, Vienna. https://www.iaea.org/publications/10962/the-fukushima-daiichi-accident

  2. ENSREG EU (2011) Stress test. Specifications, Annex I to the Declaration of ENSREG. http://www.ensreg.eu/sites/default/files/EU%20Stress%20tests%20specifications_1.pdf

  3. Nomoto T (2015) Electrical systems design applications on Japanese PWR plants in light of the Fukushima Daiichi Accident. https://inis.iaea.org/collection/NCLCollectionStore/_Public/46/066/46066617.pdf

  4. Al Shehhi AS, Chang SH, Kim SH, Kang HG (2013) Analysis of economics and safety to cope with station blackout in PWR. Ann Nucl Energy 59:63–71

    Article  Google Scholar 

  5. Teegala SK, Singal SK (2015) Economic analysis of power transmission lines using interval mathematics. J Electr Eng Technol 10(4):1471–1479

    Article  Google Scholar 

  6. Hulio ZH, Jiang W (2018) Assessment of the apparent performance characterization along with levelized cost of energy of wind power plants considering real data. Energy Explor Exploit 36(6):1708–1728

    Article  Google Scholar 

  7. Kharitonov VV, Kosterin NN (2017) Criteria of return on investment in nuclear energy. Nucl Energy Technol 3(3):176–182

    Article  Google Scholar 

  8. Yucekaya A (2013) Bidding of price taker power generators in the deregulated Turkish power market. Renew Sustain Energy Rev 22:506–514

    Article  Google Scholar 

  9. Ruiz C, Conejo AJ, Fuller JD, Gabriel SA, Hobbs BF (2014) A tutorial review of complementarity models for decision-making in energy markets. EURO J Decis Process 2(1–2):91–120

    Article  Google Scholar 

  10. Buygi MO, Zareipour H, Rosehart WD (2012) Impacts of large-scale integration of intermittent resources on electricity markets: A supply function equilibrium approach. IEEE Syst J 6(2):220–232

    Article  Google Scholar 

  11. Hobbs BE (2001) Linear complementarity models of Nash-Cournot competition in bilateral and POOLCO power markets. IEEE Trans power Syst 16(2):194–202

    Article  Google Scholar 

  12. Hobbs BF, Metzler CB, Pang J-S (2000) Strategic gaming analysis for electric power systems: an MPEC approach. IEEE Trans power Syst 15(2):638–645

    Article  Google Scholar 

  13. Yaghooti A, Buygi MO, Zareipour H (2014) Impacts of ramp rate limits on oligopolistic opportunities in electricity markets. IEEE Syst J 10(1):127–135

    Article  Google Scholar 

  14. Gharib M, Yaghooti A, Buygi MO (2011) Efficiency upgrade in PWRs. Energy Power Eng 3(04):533

    Article  Google Scholar 

  15. El Khatib ST (2011) Oligopolistic electricity markets under cap-and-trade and carbon tax. McGill University Library

  16. Tominaga J (2017) Steam turbine cycles and cycle design optimization: advanced ultra-supercritical thermal power plants and nuclear power plants. In: Advances in steam turbines for modern power plants. Elsevier, pp 41–56

  17. AESO (2016) Hourly Alberta Internal Load Data. https://www.aeso.ca/assets/Uploads/Hourly-load-data-for-2016.xlsx. Accessed 10 Mar 2017

  18. NEA IEA (1998) Projected costs of generating electricity: update. OECD, Paris. https://www.oecd-nea.org/ndd/pubs/1998/768-projected-costs.pdf

  19. International Energy Agency, NEA (2005) Projected costs of generating electricity: 2005 update. OECD/IEA. https://www.oecd-nea.org/ndd/pubs/2005/5968-projected-costs.pdf

  20. IEA NEA (2010) OECD. Projected costs of generating electricity: 2010 edition. OECD Publications, ISBN 978-92-64-08430-8. https://www.oecd-nea.org/ndd/pubs/2010/6819-projected-costs.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Jahanfarnia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Variables, coefficients and elements of matrices are defined as follows:

$${P}_{{S}_{i}}^{\left(t\right)}-{P}_{{S}_{i}}^{max}\le 0\perp {\mu }_{i}^{\left(t\right) max}\ge 0, \quad \forall i\in S,\forall t\in T$$
(a1)
$${P}_{{S}_{i}}^{min}-{P}_{{S}_{i}}^{\left(t\right)}\le 0\perp {\mu }_{i}^{\left(t\right) min}\ge 0, \quad \forall i\in S,\forall t\in T$$
(a2)
$${P}_{{S}_{i}}^{\left(t\right)}-{P}_{{S}_{i}}^{\left(t-1\right)}-{{U}_{rr}}_{i}.{P}_{{S}_{i}}^{max}\le 0\perp {\epsilon }_{i}^{\left(t\right) max}\ge 0, \quad \forall i\in S, http://orcid.org/0000-0002-5228-1444\forall t\in T$$
(a3)
$${P}_{{S}_{i}}^{\left(t-1\right)}-{P}_{{S}_{i}}^{\left(t\right)}-{{D}_{rr}}_{i}.{P}_{{S}_{i}}^{max}\le 0\perp {\epsilon }_{i}^{\left(t\right) min}\ge 0, \quad \forall i\in S, \forall t\in T.$$
(a4)

Computing \({P}_{{S}_{j}}^{\left(t\right)}\) and \({P}_{{D}_{l}}^{\left(t\right)}\) versus \({P}_{{S}_{i}}^{\left(t\right)}\) from (5) and (6) yields:

$$\begin{aligned} P_{{S_{j} }}^{{\left( t \right)}} & = \frac{1}{{b_{j} + \beta \rho _{j}^{2} }}\alpha _{i}^{{\left( t \right)}} + \mu _{i}^{{\left( t \right)}} + \epsilon _{i}^{{\left( t \right)}} \\ & \quad - \epsilon _{i}^{{\left( {t + 1} \right)}} ) - \alpha _{j}^{{\left( t \right)}} + \mu _{j}^{{\left( t \right)}} + \epsilon _{j}^{{\left( t \right)}} - \epsilon _{j}^{{\left( {t + 1} \right)}} \\ & \quad + \left( {b_{i} + \beta \rho _{i}^{2} } \right)P_{{S_{i} }}^{{\left( t \right)}} ,\quad \forall j \in S,j \ne i,\forall t \in T \\ \end{aligned}$$
(a5)
$${P}_{{D}_{l}}^{\left(t\right)}=\frac{1}{{d}_{l}^{\left(t\right)}}\left({c}_{l}^{(t)}-\left({\alpha }_{i}^{(t)}+{\mu }_{i}^{(t)}+{\epsilon }_{i}^{(t)}-{\epsilon }_{i}^{(t+1)}\right)-\left({b}_{i}+\beta {\rho }_{i}^{2}\right){P}_{{S}_{i}}^{\left(t\right)}\right), \quad \forall l\in D, \forall t\in T$$
(a6)

Substituting \({P}_{{S}_{j}}^{\left(t\right)}\), \({P}_{{D}_{l}}^{\left(t\right)}\), and \({\lambda }^{(t)}\) from (a5), (a6), and (5) into (2) yields

$${P}_{{S}_{i}}^{\left(t\right)}={\upsilon }_{i}^{(t)}{\mathbf{P}}_{D}^{\left(t\right)}+{\mathbf{u}}_{i}^{{(t)}^{Tr}}\left({\alpha }^{\left(t\right)}+{\mu }^{\left(t\right)}+{\epsilon }^{\left(t\right)}-{\epsilon }^{\left(t+1\right)}\right) , \quad \forall i\in S,\forall t\in T$$
(a7)

where \({\mathbf{P}}_{D}^{\left(t\right)}\), \({\upsilon }_{i}^{(t)}\) and elements of \({\mathbf{u}}_{i}^{(t)}\) are defined as follows:

$${\mathbf{P}}_{D}^{\left(t\right)}=\left\{\begin{array}{ll}total\,\, demand\, for\,\, inelastic\,\, loads\\ \sum_{i\in D}\frac{{c}_{i}^{\left(t\right)}}{{d}_{i}^{\left(t\right)}} for \,\,elastic\,\, loads\end{array}\right.$$
(a8)
$${\upsilon }_{i}^{(t)}=\frac{1}{{(b}_{i}+\beta {\rho }_{i}^{2}){B}^{(t)}} \quad \forall i\in S,\forall t\in T$$
(a9)
$${u}_{{i}_{j}}^{(t)}=\frac{1}{{(b}_{i}+\beta {\rho }_{i}^{2}){(b}_{j}+\beta {\rho }_{j}^{2}){B}^{(t)}} \forall i\in S, i\ne j, \quad \forall t\in T$$
(a10)
$${B}^{(t)}=\left\{\begin{array}{c}\sum_{i\in S}\frac{1}{{b}_{i}+\beta {\rho }_{i}^{2}} for\,\, inelastic\,\, loads\\ \sum_{i\in S}\frac{1}{{b}_{i}+\beta {\rho }_{i}^{2}}+\sum_{i\in D}\frac{1}{{d}_{i}^{\left(t\right)}} \,for \,\,elastic \,\,loads\end{array}\right.$$
(a11)

Elements of \({\mathbf{P}}_{f}^{\left(t\right)}\), \({\mathbf{R}}_{f}^{\left(t\right)}\),\({\mathbf{R}}_{f}^{{{\prime}}\left(t\right)}\),\({\mathbf{S}}_{f}^{{{\prime}}\left(t\right)}\), and \({\mathbf{S}}_{f}^{{{\prime}}{^{\prime}}\left(t\right)}\) are defined as follows:

$${P}_{{f}_{ij}}^{\left(t\right)}=\frac{1}{2{B}^{{(t)}^{2}}}\frac{{B}_{f}}{{(b}_{i}+\beta {\rho }_{i}^{2}){(b}_{j}+\beta {\rho }_{j}^{2})} \forall i\in {S}_{f}, \quad \forall j\in {S}_{f}, i\ne j, \quad \forall t\in T$$
(a12)
$${P}_{{f}_{ii}}^{\left(t\right)}=\frac{1}{2}(\frac{{B}_{f}}{{B}^{{(t)}^{2}}{{(b}_{i}+\beta {\rho }_{i}^{2})}^{2}}-\frac{1}{{b}_{i}+\beta {\rho }_{i}^{2}}) \quad \forall i\in {S}_{f}, \forall t\in T$$
(a13)
$${P}_{{f}_{ij}}^{\left(t\right)}=\frac{1}{2{B}^{{(t)}^{2}}}\frac{{B}_{f}-{B}^{(t)}}{{(b}_{i}+\beta {\rho }_{i}^{2}){(b}_{j}+\beta {\rho }_{j}^{2})} \forall i\in {S}_{f}, \quad \forall j\in {S}_{\widehat{f}},\forall t\in T$$
(a14)
$${P}_{{f}_{ij}}^{\left(t\right)}=\frac{1}{2{B}^{{(t)}^{2}}}\frac{{B}_{f}+{B}^{(t)}}{{(b}_{i}+\beta {\rho }_{i}^{2}){(b}_{j}+\beta {\rho }_{j}^{2})} \quad \forall i\in {S}_{\widehat{f}},\forall j\in {S}_{f},\forall t\in T$$
(a15)
$${P}_{{f}_{ij}}^{\left(t\right)}=\frac{1}{2{B}^{{(t)}^{2}}}\frac{{B}_{f}}{{(b}_{i}+\beta {\rho }_{i}^{2}){(b}_{j}+\beta {\rho }_{j}^{2})} \quad \forall i\in {S}_{\widehat{f}},\forall j\in {S}_{\widehat{f}},\forall t\in T$$
(a16)
$${R}_{{f}_{i}}^{\left(t\right)}=\frac{1}{{B}^{\left(t\right)}\left({b}_{i}+\beta {\rho }_{i}^{2}\right)}\left(\left({a}_{i}+{\gamma }^{0}{\rho }_{i}\right){B}^{\left(t\right)}-{C}_{f}\right) \quad \forall i\in {S}_{f}, \forall t\in T$$
(a17)
$${R}_{{f}_{i}}^{\left(t\right)}=\frac{-{C}_{f}}{{B}^{\left(t\right)}\left({b}_{i}+\beta {\rho }_{i}^{2}\right)} \forall i\in {S}_{\widehat{f}}, {R}_{{f}_{i}}^{{{\prime}}\left(t\right)}=\frac{{B}_{f}}{{B}^{{\left(t\right)}^{2}}\left({b}_{i}+\beta {\rho }_{i}^{2}\right)} \quad \forall i\in S , \forall t\in T$$
(a18)
$${S}_{f}^{{{\prime}}\left(t\right)}=\frac{-{C}_{f}}{{B}^{\left(t\right)}}. {S}_{f}^{{{\prime}}{^{\prime}}\left(t\right)}=\frac{{B}_{f}}{2{B}^{{\left(t\right)}^{2}}} , \quad \forall t\in T$$
(a19)
$${B}_{f}=\sum_{i\in {S}_{f}}\frac{1}{{b}_{i}+\beta {\rho }_{i}^{2}}, {C}_{f}=\sum_{i\in {S}_{f}}\frac{{a}_{i}+{\gamma }^{0}{\rho }_{i}}{{b}_{i}+\beta {\rho }_{i}^{2}}$$
(a20)

where subscript f indicates firm f and subscript \(\widehat{f}\) indicates all firms except firm f.

s.t.: (Eq. (7))

$${{\varvec{V}}}^{(t)}{{\varvec{P}}}_{D}^{\left(t\right)}+{{\varvec{U}}}^{(t)}\left({\alpha }^{\left(t\right)}+{\mu }^{\left(t\right)}+{\epsilon }^{\left(t\right)}-{\epsilon }^{\left(t+1\right)}\right)\le {{\varvec{P}}}_{S}^{max}\perp {\mu }^{{\left(t\right)}^{max}}\ge 0, \quad \forall t\in T$$
(a21)
$${{\varvec{V}}}^{(t)}{{\varvec{P}}}_{D}^{\left(t\right)}+{{\varvec{U}}}^{(t)}\left({\alpha }^{\left(t\right)}+{\mu }^{\left(t\right)}+{\epsilon }^{\left(t\right)}-{\epsilon }^{\left(t+1\right)}\right)\ge {{\varvec{P}}}_{S}^{min}\perp {\mu }^{{\left(t\right)}^{min}}\ge 0, \quad \forall t\in T$$
(a22)
$${{\varvec{V}}}^{(t)}{{\varvec{P}}}_{D}^{\left(t\right)}-{{\varvec{V}}}^{\left(t-1\right)}{{\varvec{P}}}_{D}^{\left(t-1\right)}+{{\varvec{U}}}^{\left(t\right)}\left({\alpha }^{\left(t\right)}+{\mu }^{\left(t\right)}+{\epsilon }^{\left(t\right)}-{\epsilon }^{\left(t+1\right)}\right)-{{\varvec{U}}}^{\left(t-1\right)}\left({\alpha }^{\left(t-1\right)}+{\mu }^{\left(t-1\right)}+{\epsilon }^{\left(t-1\right)}-{\epsilon }^{\left(t\right)}\right)\le {U}_{rr}{{\varvec{P}}}_{S}^{max}\perp {\epsilon }^{{\left(t\right)}^{max}}\ge 0, \quad \forall t\in T-\{initial\,time\}$$
(a23)
$$-{{\varvec{V}}}^{\left(t\right)}{{\varvec{P}}}_{D}^{\left(t\right)}+{{\varvec{V}}}^{\left(t-1\right)}{{\varvec{P}}}_{D}^{\left(t-1\right)}-{{\varvec{U}}}^{\left(t\right)}\left({\alpha }^{\left(t\right)}+{\mu }^{\left(t\right)}+{\epsilon }^{\left(t\right)}-{\epsilon }^{\left(t+1\right)}\right)+{{\varvec{U}}}^{\left(t-1\right)}\left({\alpha }^{\left(t-1\right)}+{\mu }^{\left(t-1\right)}+{\epsilon }^{\left(t-1\right)}-{\epsilon }^{\left(t\right)}\right)\le {D}_{rr}{{\varvec{P}}}_{S}^{max}\perp {\epsilon }^{{\left(t\right)}^{min}}\ge 0, \quad \forall t\in T-\{initial\,time\}$$
(a24)
$${\varvec{V}}^{\left( t \right)} {\varvec{P}}_{D}^{\left( t \right)} + {\varvec{U}}^{\left( t \right)} \left( {\alpha^{\left( t \right)} + \mu^{\left( t \right)} +^{\left( t \right)} -^{{\left( {t + 1} \right)}} } \right) - {\varvec{P}}_{S}^{\left( 0 \right)} \le U_{rr} {\varvec{P}}_{S}^{max} \bot^{{\left( t \right)^{max} }} \ge 0, \quad \forall t \in \left\{ {initial\,time} \right\}$$
(a25)
$$- {\varvec{V}}^{\left( t \right)} {\varvec{P}}_{D}^{\left( t \right)} - {\varvec{U}}^{\left( t \right)} \left( {\alpha^{\left( t \right)} + \mu^{\left( t \right)} +^{\left( t \right)} -^{{\left( {t + 1} \right)}} } \right) + {\varvec{P}}_{S}^{\left( 0 \right)} \le D_{rr} {\varvec{P}}_{S}^{max} \bot^{{\left( t \right)^{min} }} \ge 0, \quad \forall t \in \left\{ {initial\,time} \right\}$$
(a26)

where subscript f indicates firm f, \(\mu^{\left( t \right)} = \mu^{{\left( t \right)^{max} }} - \mu^{{\left( t \right)^{min} }}\), \(\epsilon^{\left( t \right)} =^{{\left( t \right)^{max} }} -^{{\left( t \right)^{min} }}\).

Equations (a18) and (a19) model maximum and minimum generation constraints, respectively. Equations (a22) and (a23) model ramp-up and ramp-down limits for initial hour, and (a20) and (a21) model ramp-up and ramp-down limits for other hours, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad Khanbeigi, G., Jahanfarnia, G., Sharifloo, N.M. et al. Trade-off Between Cost and Safety To Cope with Station Blackout in A PWR in A Deregulated Electricity Market. J. Electr. Eng. Technol. 15, 2045–2056 (2020). https://doi.org/10.1007/s42835-020-00488-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42835-020-00488-5

Keywords

Navigation