Skip to main content
Log in

Structure and Electrochemical Properties of Si-Mn/C Core–Shell Composites for Lithium-Ion Batteries

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

A series of Si-Mn/C core–shell composites as anode materials is synthesized via a hydrothermal method combined with heating treatment. X-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy analysis are used to investigate the crystal structures and chemical compositions of all as-prepared composites. With the increase of Mn4Si7 alloy content in the Si-Mn/C composites, their cycle properties and rate capabilities increase first and then decrease. As a result, the obtained Si-Mn/C (9:1) displays the largest specific capacity of approximately 960 mAh/g after 100 cycles among all composites, and it can be sustained at 1 A/g with a reversible specific capacity of 460 mAh/g, demonstrating good electrochemical performance for Si-based anodes. Our study presents an ideal candidate to improve the mechanical integrity and electrochemical property of a Si-based anode for potential application in lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Li, G.J. Xu, Y.F. Yao, L. Xue, M. Yanilmaz, H. Lee, and X.W. Zhang, Solid State Ion. 258, 67 (2014).

    Article  Google Scholar 

  2. Y.H. Xu, Y.J. Zhu, F.D. Han, C. Luo, and C.S. Wang, Adv. Energy Mater. 5, 1400753 (2015).

    Article  Google Scholar 

  3. C.Y. Du, M. Chen, L. Wang, and G.P. Yin, J. Mater. Chem. 21, 15692 (2011).

    Article  Google Scholar 

  4. L.W. Ji and X.W. Zhang, Carbon 47, 3219 (2009).

    Article  Google Scholar 

  5. W. Wang, Z. Favors, C.L. Li, C. Liu, R. Ye, C.Y. Fu, K. Bozhilov, J.H. Guo, M. Ozkan, and C.S. Ozkan, Sci. Rep. 7, 44838 (2017).

    Article  Google Scholar 

  6. J.H. Kong, W.A. Yee, Y.F. Wei, L.P. Yang, J.M. Ang, S.L. Phua, S.Y. Wong, R. Zhou, Y.L. Dong, X. Li, and X.H. Lu, Nanoscale 5, 2967 (2013).

    Article  Google Scholar 

  7. Q. Si, K. Hanai, T. Ichikawa, A. Hirano, N. Imanishi, Y. Takeda, and O. Yamamoto, J. Power Sources 195, 1720 (2010).

    Article  Google Scholar 

  8. Z.J. He, X.W. Wu, Z.J. Yi, X.Y. Wang, and Y.H. Xiang, Mater. Lett. 200, 128 (2017).

    Article  Google Scholar 

  9. J. Shin, K. Park, W.H. Ryu, J.W. Jung, and I.D. Kim, Nanoscale 6, 12718 (2014).

    Article  Google Scholar 

  10. Y. Yang, Z.X. Wang, Y. Zhou, H.J. Guo, and X.H. Li, Mater. Lett. 199, 84 (2017).

    Article  Google Scholar 

  11. Y. Li, L. Huang, P. Zhang, X. Ren, and L. Deng, Nanoscale Res. Lett. 10, 414 (2015).

    Article  Google Scholar 

  12. S.J. Kim, M.C. Kim, S.B. Han, G.H. Lee, H.S. Choe, S.H. Moon, D.H. Kwak, S. Hong, and K.W. Park, J. Ind. Eng. Chem. 49, 105 (2017).

    Article  Google Scholar 

  13. W.Y. Li, Y.B. Tang, W.P. Kang, Z.Y. Zhang, X. Yang, Y. Zhu, W.J. Zhang, and C.S. Lee, Small 11, 1345 (2015).

    Article  Google Scholar 

  14. M. Sohn, D.S. Kim, H.I. Park, J.H. Kim, and H. Kim, Electrochim. Acta 196, 197 (2016).

    Article  Google Scholar 

  15. L. Deng, Z.Y. Wu, Z.W. Yin, Y.Q. Lu, Z.G. Huang, J.H. You, J.T. Li, L. Huang, and S.G. Sun, Electrochim. Acta 260, 830 (2018).

    Article  Google Scholar 

  16. T. Suzuki, S.G. Kim, and W.T. Kim, Mater. Sci. Eng. A 449, 99 (2007).

    Article  Google Scholar 

  17. Y. Gao, M. Peng, Y. Sun, Y. Yang, and X. Wang, Optoelectron. Adv. Mater.-Rapid Commun. 9, 245 (2015).

    Google Scholar 

  18. K. Wang, X.M. He, L. Wang, J.G. Ren, C.Y. Jiang, and C.R. Wan, Solid State Ion. 178, 115 (2007).

    Article  Google Scholar 

  19. X.D. Wu, Z.X. Wang, L.Q. Chen, and X.J. Huang, Electrochem. Commun. 5, 935 (2003).

    Article  Google Scholar 

  20. G.A. Roberts, E.J. Cairns, and J.A. Reimer, J. Power Sources 110, 424 (2002).

    Article  Google Scholar 

  21. Y.S. Lee, J.H. Lee, Y.W. Kim, Y.K. Sun, and S.M. Lee, Electrochim. Acta 52, 1523 (2006).

    Article  Google Scholar 

  22. A. Apasi, P.B. Madakson, D.S. Yawas, and V.S. Aigbodion, Tribol. Ind. 34, 36 (2012).

    Google Scholar 

  23. H. Dong, X.P. Ai, and H.X. Yang, Electrochem. Commun. 5, 952 (2003).

    Article  Google Scholar 

  24. U. Böyük, S. Engin, and N. Maraşlı, Mater. Charact. 62, 844 (2011).

    Article  Google Scholar 

  25. D. Antonangeli, J. Siebert, J. Badro, D.L. Farber, G. Fiquet, G. Morard, and F.J. Ryerson, Earth Planet. Sci. Lett. 295, 292 (2010).

    Article  Google Scholar 

  26. H. Jung, Y.U. Kim, M.S. Sung, Y. Hwa, G. Jeong, G.B. Kim, and H.J. Sohn, J. Mater. Chem. 21, 11213 (2011).

    Article  Google Scholar 

  27. H.C. Song, H.X. Wang, Z.X. Lin, X.F. Jiang, L. Yu, J. Xu, Z.W. Yu, X.W. Zhang, Y.J. Liu, P. He, L.J. Pan, Y. Shi, H.S. Zhou, and K.J. Chen, Adv. Funct. Mater. 26, 524 (2016).

    Article  Google Scholar 

  28. P.X. Zhang, L. Huang, Y.L. Li, X.Z. Ren, L.B. Deng, and Q.H. Yuan, Electrochim. Acta 192, 385 (2016).

    Article  Google Scholar 

  29. D.K. Ahn, J.J. Song, H.J. Ahn, J.S. Cho, J.T. Moon, W.W. Park, and K.Y. Sohn, J. Nanosci. Nanotechnol. 13, 3522 (2013).

    Article  Google Scholar 

  30. R.P. Wang, G.W. Zhou, Y.L. Liu, S.H. Pan, H.Z. Zhang, D.P. Yu, and Z. Zhang, Phys. Rev. B 61, 16827 (2000).

    Article  Google Scholar 

  31. S.R. Jadkar, J.V. Sali, M.G. Takwale, D.V. Musale, and S.T. Kshirsagar, Sol. Energy Mater. Sol. Cells 64, 333 (2000).

    Article  Google Scholar 

  32. N. Liu, H. Wu, M.T. McDowell, Y. Yao, C.M. Wang, and Y. Cui, Nano Lett. 12, 3315 (2012).

    Article  Google Scholar 

  33. R. Yi, F. Dai, M.L. Gordin Sohn, and D.H. Wang, Adv. Energy Mater. 3, 1507 (2013).

    Article  Google Scholar 

  34. F. Jolly, F. Rochet, G. Dufour, C. Grupp, and A. Taleb-Ibrahimib, J. Non-Cryst. Solids 280, 150 (2001).

    Article  Google Scholar 

  35. G. Shi, Z.Q. Zou, L.M. Sun, W.C. Li, and X.Y. Liu, Acta. Phys. Sin. 61, 227301 (2012).

    Google Scholar 

  36. D.C. Zuo, S.C. Song, C.S. An, L.B. Tang, and Z.J. He, Nano Energy 62, 401 (2019).

    Article  Google Scholar 

  37. X.M. Fan, X.H. Zhang, G.R. Hu, B. Zhang, Z.J. He, Y.J. Li, and J.C. Zheng, Ionics 26, 1721 (2020).

    Article  Google Scholar 

  38. L.B. Tang, B. Zhang, C.S. An, H. Li, B. Xiao, J.H. Li, Z.J. He, and J.C. Zheng, Inorg. Chem. 58, 8169 (2019).

    Article  Google Scholar 

  39. Y.F. An, B. Yuan, L.B. Zhang, B. Tang, Z.J. Xiao, and J.C.Zheng He, J. Lu. Adv. Energy Mater. 9, 1900356 (2019).

    Article  Google Scholar 

Download references

Acknowledgement

We appreciate the financial support from the National Natural Science Foundation of China (Grants Nos. 51272187 and 11704288), the Science and Technology Supporting Program of Hubei Province (Grants Nos. 2015BAA093, 2013CFA012) and the Scientific Project provided by the Wuhan Government (Grants No. 2016010101010026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geming Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, T., Zhong, Y. et al. Structure and Electrochemical Properties of Si-Mn/C Core–Shell Composites for Lithium-Ion Batteries. JOM 72, 3037–3045 (2020). https://doi.org/10.1007/s11837-020-04214-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04214-4

Navigation