Skip to main content

Advertisement

Log in

Particle fragmentation based on strain energy field

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We propose a method for the simulation of particle fragmentation based on the calculation of the strain energy field inside the particle. The topography of strain energy is calculated in terms of internal stress using the principles of damage and fracture mechanics. Numerical calculation of the energy field’s ridges is used to determine the breakage criterion as well as the shape of the post-breakage fragments. This method provides a physical-based understanding of the breakage effect in granular material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Koohmishi, M., Palassi, M.: Evaluation of the strength of railway ballast using point load test for various size fractions and particle shapes. Rock Mech. Rock Eng. 49, 2655–2664 (2016)

    Article  ADS  Google Scholar 

  2. Karatza, Z., And, E., Papanicolopulos, S.A., Viggiani, G., Ooi, J.Y.: Effect of particle morphology and contacts on particle breakage in a granular assembly studied using X-ray tomography. Granul. Matter 21(44), 1–13 (2019)

    Google Scholar 

  3. Casini, F., Viggiani, G.M.B., Springman, S.M.: Breakage of an artificial crushable material under loading. Granul. Matter 15, 661–673 (2013)

    Article  Google Scholar 

  4. Sohn, C., Zhang, Y.D., Cil, M., Buscarnera, G.: Experimental assessment of continuum breakage models accounting for mechanical interactions at particle contact. Granul. Matter 19(67), 1–14 (2017)

    Google Scholar 

  5. Hardin, B.O.: Crushing of soil particles. J. Geotech. Geoenviron. 111, 1177–1192 (1985)

    Google Scholar 

  6. McDowell, G.R., Bolton, M.D., Robertson, D.: The fractal crushing of granular materials. J. Mech. Phys. Solids 44, 2079–2101 (1996)

    Article  ADS  Google Scholar 

  7. Lee, L.K., Farhoomand, I.: Compressibility and crushing of granular soil in anisotropic triaxial compression. Can. Geotech. J. IV(1), 69–85 (1967)

    Google Scholar 

  8. Bono, J.D., Mcdowell, G.R.: Particle breakage criteria in discrete-element modelling. Gotechnique 66, 1014–1027 (2016)

    Article  Google Scholar 

  9. Astrom, J.A., Herrmann, H.J.: Fragmentation of grains in a two-dimensional packing. Eur. Phys. J. B 5, 551–554 (1998)

    Article  ADS  Google Scholar 

  10. Tsoungui, O., Vallet, D., Charmet, J.C.: Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol. 105, 190–198 (1999)

    Article  Google Scholar 

  11. Cantor, D., Estrada, N., Azma, E.: Split-cell method for grain fragmentation. Comput. Geotech. 67, 150–156 (2015)

    Article  Google Scholar 

  12. Elias, J.: Simulation of railway ballast using crushable polyhedral particles. Powder Technol. 264, 458–465 (2014)

    Article  Google Scholar 

  13. Gladkyy, A., Kuna, M.: DEM simulation of polyhedral particle cracking using a combined Mohr–Coulomb–Weibull failure criterion. Granul. Matter 19, 41 (2017)

    Article  Google Scholar 

  14. McDowell, G.R., Harireche, O.: Discrete element modelling of yielding and normal compression of sand. Géotechnique 53(4), 299–304 (2002)

    Article  Google Scholar 

  15. Zhang, Y.D., Buscarnera, G., Einav, I.: Grain size dependence of yielding in granular soils interpreted using fracture mechanics, breakage mechanics and Weibull statistics. Gotechnique 66(2), 149–160 (2015)

    Article  Google Scholar 

  16. McDowell, G.R., Bolton, M.D.: On the micromechanics of crushable aggregates. Gotechnique 48(5), 667–679 (1998)

    Article  Google Scholar 

  17. Olsson, W.A.: Grain size dependence of yield stress in marble. J. Geophys. Res. 79(32), 4859–4862 (1974)

    Article  ADS  Google Scholar 

  18. Yashima, S., Kanda, Y., Sano, S.: Relationships between particle size and fracture energy or impact velocity required to fracture as estimated from single particle crushing. Powder Technol. 51, 277–282 (1987)

    Article  Google Scholar 

  19. Lee, D.M.: The Angles of Friction of Granular Fills. University of Cambridge PhD dissertation. Dec (1992)

  20. Alonso-Marroqun, Fernando: Static equations of the Cosserat continuum derived from intra-granular stresses. Granul. Matter 13(3), 189–196 (2011)

    Article  Google Scholar 

  21. Jiang, Y., Herrmann, H.J., Alonso-Marroquín, F.: A boundary-spheropolygon element method for modelling sub-particle stress and particle breakage. Comput. Geotech. 113, 103087 (2019)

    Article  Google Scholar 

  22. Griffith, A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 221(587), 163–198 (1921)

    ADS  Google Scholar 

  23. Lemaitre, J., Chaboche, J.L.: Aspect phenomenologique de la rupture par endommagement. J. Mec. Appl. 2(3), 317–365 (1978)

    Google Scholar 

  24. Chaboche, J.L.: Continuum damage mechanics: part I-general concepts. J. Appl. Mech. 55, 59–64 (1988)

    Article  ADS  Google Scholar 

  25. Lajtai: Brittle fracture in compression. Int. J. Fract. 10(4), 525–536 (1974)

    Article  Google Scholar 

  26. Hoek, E., Bieniawshi, Z.T.: Brittle fracture propagation in rock under compression. Int. J. Fract. Mech. 1(3), 137–155 (1965)

    Article  Google Scholar 

  27. Salami, Y., Dano, C., Hicher, P.: An experimental study on the influence of the coordination number on grain crushing. Eur. J. Environ. Civ. Eng. 23(3), 432–448 (2019)

    Article  Google Scholar 

  28. Tang, C.A., Liu, H.Y., Zhu, W.C., Yang, T.H., Li, W.H., Song, L., Lin, P.: Numerical approach to particle breakage under different loading conditions. Powder Technol. 143–144, 130–143 (2004)

    Article  Google Scholar 

  29. Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 117–156 (1998)

    Article  Google Scholar 

  30. Brace, W.F., Bombolakis, E.G.: A note on brittle crack growth in compression. J. Geophys. Res. 68(12), 1–5 (1963)

    Article  Google Scholar 

  31. Carmona, H.A., Kun, F., Andrade, J.S., Herrmann, H.J.: Computer simulation of fatigue under diametrical compression. Phys. Rev. E 75, 046115 (2007)

    Article  ADS  Google Scholar 

  32. Artoni, R., Neveu, A., Descantes, Y., Richard, P.: Effect of contact location on the crushing strength of aggregates. J. Mech. Phys. Solids 122, 406–417 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  33. Hurly, R.C., Lind, J., Pagan, D.C., Akin, M.C., Herbold, E.B.: In situ grain fracture mechanics during uniaxial compaction of granular solids. J. Mech. Phys. Solids 112, 273–290 (2018)

    Article  ADS  Google Scholar 

  34. Khanlari, G., Rafiei, B., Abdilor, Y.: An experimental investigation of the Brazilian tensile strength and failure patterns of Laminated sandstones. Rock Mech. Rock Eng. 48, 843–852 (2015)

    Article  ADS  Google Scholar 

  35. Sukumaran, B., Einav, I., Dyskin, A.: Qualitative assessment of the influence of coordination number on crushing strength using DEM. 5th World Congress on Particle, pp. 1–8. Orlando, FL (2006)

Download references

Acknowledgements

We deeply thank the anonymous reviewers for their valuable comments, all of which helped us to improve the quality of this paper. This research is financially supported by Australia research council (ARC) linkage project Performance of granular matrix under heavy haul cyclic loading (LP160100280).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yupeng Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Alonso-Marroquín, F., Herrmann, H.J. et al. Particle fragmentation based on strain energy field. Granular Matter 22, 69 (2020). https://doi.org/10.1007/s10035-020-01038-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01038-6

Keywords

Navigation