Skip to main content
Log in

Retention and Partition Behaviors of Solutes in a Surfactant-Based Mobile Phase at Concentrations Approaching the Critical Micelle Concentration in Liquid Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Previously developed three-phase retention model has been extensively used to understand the partition behaviors of solutes in micellar liquid chromatography (MLC). The model has been used to explain the linear plots of the reciprocal of the solute retention factor versus the micelle concentration in the mobile phase. Because a phase equilibrium model of micellization is assumed, the retention model is generally applied to systems at surfactant concentrations above the critical micelle concentration (CMC). This study investigated the retention behaviors of five solutes, namely acetone, benzaldehyde, acetophenone, benzene, and benzyl alcohol, as a function of the concentration of dodecyltrimethylammonium bromide (DTAB) in water on a C18 sorbent. Distinct retention behaviors were observed for DTAB concentrations below and above the CMC, which have not been adequately explained by the retention models described in the literature. Thus, a new MLC retention model based on a mass action model of micellization was developed herein. Retention and partition behaviors were found to be determined by three key dimensionless groups, representing the partition coefficients of the solutes between the DTAB-uncomplexed aqueous phase and the stationary, DTAB-complexed aqueous, and micellar phases. Thermodynamic equilibrium constants were estimated from fitting the model to the retention factor data. The new model showed a good fit to the HPLC data below and above the CMC and was reliable for describing the transition of distinct retention behaviors near the CMC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of Data and Material

All data generated or analyzed during this study are included in this article and its Supplementary Material file.

Code Availability

Not applicable

References

  1. Armstrong DW (1985) Micelles in separations: practical and theoretical review. Sep Purif Rev 14:213–304. https://doi.org/10.1080/03602548508068421

    Article  CAS  Google Scholar 

  2. Armstrong DW, Nome F (1981) Partitioning behavior of solutes eluted with micellar mobile phases in liquid chromatography. Anal Chem 53:1662–1666. https://doi.org/10.1021/ac00234a026

    Article  CAS  Google Scholar 

  3. Williams RW, Fu Z, Hinze WL (1990) Micellar bile salt mobile phases for the liquid chromatographic separation of routine compounds and optical, geometrical, and structural isomers. J Chromatogr Sci 28:292–302. https://doi.org/10.1093/chromsci/28.6.292

    Article  CAS  PubMed  Google Scholar 

  4. Hinze WL, Williams RW, Fu ZS et al (1990) Novel chiral separation techniques based on surfactants. Colloids Surf 48:79–94. https://doi.org/10.1016/0166-6622(90)80220-x

    Article  CAS  Google Scholar 

  5. Hu W, Takeuchi T, Haraguchi H (1992) Retention behaviour of binaphthyl compounds in enantiomeric separation by microcolumn liquid chromatography with micellar bile-salt mobile phases. Chromatographia 33:58–62. https://doi.org/10.1007/bf02276853

    Article  CAS  Google Scholar 

  6. Kalyankar TM, Kulkarni PD, Wadher SJ, Pekamwar SS (2014) Applications of micellar liquid chromatography in bioanalysis: a review. J Appl Pharm Sci 4:128–134. https://doi.org/10.7324/japs.2014.40122

    Article  Google Scholar 

  7. Berthod A, Garcia-Alvarez-Coque C (2000) Micellar liquid chromatography, 1st edn. CRC Press, New York

    Book  Google Scholar 

  8. Ruiz-Ángel MJ, García-Álvarez-Coque MC, Berthod A (2009) New insights and recent developments in micellar liquid chromatography. Sep Purif Rev 38:45–96. https://doi.org/10.1080/15422110802178876

    Article  CAS  Google Scholar 

  9. Foley JP, May WE (1987) Optimization of secondary chemical equilibria in liquid chromatography: theory and verification. Anal Chem 59:102–109. https://doi.org/10.1021/ac00128a022

    Article  CAS  Google Scholar 

  10. Arunyanart M, Love LJC (1984) Model for micellar effects on liquid chromatography capacity factors and for determination of micelle–solute equilibrium constants. Anal Chem 56:1557–1561. https://doi.org/10.1021/ac00273a005

    Article  CAS  Google Scholar 

  11. Armstrong DW, Stine GY (1983) Evaluation and perturbation of micelle–solute interactions. J Am Chem Soc 105:6220–6223. https://doi.org/10.1021/ja00358a004

    Article  CAS  Google Scholar 

  12. Blandamer MJ, Cullis PM, Soldi LG et al (1995) Thermodynamics of micellar systems: comparison of mass action and phase equilibrium models for the calculation of standard Gibbs energies of micelle formation. Adv Colloid Interface Sci 58:171–209. https://doi.org/10.1016/0001-8686(95)00252-l

    Article  CAS  PubMed  Google Scholar 

  13. Ruiz-Angel MJ, Peris-García E, García-Alvarez-Coque MC (2015) Reversed-phase liquid chromatography with mixed micellar mobile phases of Brij-35 and sodium dodecyl sulphate: a method for the analysis of basic compounds. Green Chem 17:3561–3570. https://doi.org/10.1039/c5gc00338e

    Article  CAS  Google Scholar 

  14. Foley JP (1990) Critical compilation of solute-micelle binding constants and related parameters from micellar liquid chromatographic measurements. Anal Chim Acta 231:237–247. https://doi.org/10.1016/S0003-2670(00)86422-3

    Article  CAS  Google Scholar 

  15. Richardson AE, McPherson SD, Fasciano JM et al (2017) Micellar liquid chromatography of terephthalic acid impurities. J Chromatogr A 1491:67–74. https://doi.org/10.1016/j.chroma.2017.02.039

    Article  CAS  PubMed  Google Scholar 

  16. Ramezani AM, Yousefinejad S, Shahsavar A et al (2019) Quantitative structure–retention relationship for chromatographic behaviour of anthraquinone derivatives through considering organic modifier features in micellar liquid chromatography. J Chromatogr A 1599:46–54. https://doi.org/10.1016/j.chroma.2019.03.063

    Article  CAS  PubMed  Google Scholar 

  17. Armstrong DW, Terrill RQ (1979) Thin layer chromatographic separation of pesticides, decachlorobiphenyl, and nucleosides with micellar solutions. Anal Chem 51:2160–2163. https://doi.org/10.1021/ac50049a025

    Article  CAS  Google Scholar 

  18. Ruiz-Ángel MJ, Carda-Broch S, Torres-Lapasió JR, García-Álvarez-Coque MC (2009) Retention mechanisms in micellar liquid chromatography. J Chromatogr A 1216:1798–1814. https://doi.org/10.1016/j.chroma.2008.09.053

    Article  CAS  PubMed  Google Scholar 

  19. Junquera E, Aicart E (2002) Mixed micellization of dodecylethyldimethylammonium bromide and dodecyltrimethylammonium bromide in aqueous solution. Langmuir 18:9250–9258. https://doi.org/10.1021/la026121p

    Article  CAS  Google Scholar 

  20. Phillips JN (1955) The energetics of micelle formation. Trans Faraday Soc 51:561–569. https://doi.org/10.1039/TF9555100561

    Article  CAS  Google Scholar 

  21. Tsui H-W, Franses EI, Wang N-HL (2014) Effect of alcohol aggregation on the retention factors of chiral solutes with an amylose-based sorbent: modeling and implications for the adsorption mechanism. J Chromatogr A 1328:52–65. https://doi.org/10.1016/j.chroma.2013.12.078

    Article  CAS  PubMed  Google Scholar 

  22. Tsui H-W, Hwang MY, Ling L et al (2013) Retention models and interaction mechanisms of acetone and other carbonyl-containing molecules with amylose tris[(S)-α-methylbenzylcarbamate] sorbent. J Chromatogr A 1279:36–48. https://doi.org/10.1016/j.chroma.2012.12.028

    Article  CAS  PubMed  Google Scholar 

  23. Tsui H-W, Kuo C-H, Huang Y-C (2019) Elucidation of retention behaviors in reversed-phase liquid chromatography as a function of mobile phase composition. J Chromatogr A 1595:127–135. https://doi.org/10.1016/j.chroma.2019.02.049

    Article  CAS  PubMed  Google Scholar 

  24. Hsieh H-Y, Wu S-G, Tsui H-W (2017) Retention models and interaction mechanisms of benzene and other aromatic molecules with an amylose-based sorbent. J Chromatogr A 1494:55–64. https://doi.org/10.1016/j.chroma.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  25. Lämmerhofer M (2010) Chiral recognition by enantioselective liquid chromatography: mechanisms and modern chiral stationary phases. J Chromatogr A 1217:814–856. https://doi.org/10.1016/j.chroma.2009.10.022

    Article  CAS  PubMed  Google Scholar 

  26. Horváth C, Melander W, Molnár I (1976) Solvophobic interactions in liquid chromatography with nonpolar stationary phases. J Chromatogr A 125:129–156. https://doi.org/10.1016/S0021-9673(00)93816-0

    Article  Google Scholar 

  27. Snyder LR, Kirkland JJ, Dolan JW (2009) Introduction to modern liquid chromatography, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  28. Guiochon G, Felinger A, Shirazi DG (2006) Fundamentals of preparative and nonlinear chromatography, 2nd edn. Academic Press, Cambridge

    Google Scholar 

  29. Wankat PC (2011) Separation process engineering: includes mass transfer analysis, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  30. Wankat PC (1994) Rate-controlled separations. Blackie Academic & Professional, Glasgow

    Book  Google Scholar 

  31. Pisárčik M, Devínsky F, Švajdlenka E (1996) Spherical dodecyltrimethylammonium bromide micelles in the limit region of transition to rod-like micelles. A light scattering study. Colloids Surf Physicochem Eng Asp 119:115–122. https://doi.org/10.1016/S0927-7757(96)03754-5

    Article  Google Scholar 

  32. Sachin KM, Karpe SA, Singh M, Bhattarai A (2019) Study on surface properties of sodium dodecyl sulfate and dodecyltrimethylammonium bromide mixed surfactants and their interaction with dyes. Heliyon. https://doi.org/10.1016/j.heliyon.2019.e01510

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moulik SP, Haque MdE, Jana PK, Das AR (1996) Micellar properties of cationic surfactants in pure and mixed states. J Phys Chem 100:701–708. https://doi.org/10.1021/jp9506494

    Article  CAS  Google Scholar 

  34. Shah SK, Bhattarai A, Chatterjee SK (2014) Densities and partial molar volumes of dodecyltrimethylammonium bromide in binary systems (methanol + water) at T = (298.15 to 323.15) K. Am J Chem Eng 2:76. https://doi.org/10.11648/j.ajche.20140206.12

    Article  CAS  Google Scholar 

  35. Rimmer CA, Simmons CR, Dorsey JG (2002) The measurement and meaning of void volumes in reversed-phase liquid chromatography. J Chromatogr A 965:219–232. https://doi.org/10.1016/S0021-9673(02)00730-6

    Article  CAS  PubMed  Google Scholar 

  36. Armstrong DW, Ward TJ (1986) Micellar effects on molecular diffusion: theoretical and chromatographic considerations. Anal Chem 58:579–582. https://doi.org/10.1021/ac00294a019

    Article  CAS  Google Scholar 

  37. Borgerding MF, Hinze WL, Stafford LD et al (1989) Investigations of stationary phase modification by the mobile phase surfactant in micellar liquid chromatography. Anal Chem 61:1353–1358. https://doi.org/10.1021/ac00188a011

    Article  CAS  Google Scholar 

  38. Alain B, Ines G, Colette G (1986) Micellar liquid chromatography, adsorption isotherms of two ionic surfactants on five stationary phases. Anal Chem 58:1356–1358. https://doi.org/10.1021/ac00298a019

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Science and Technology of Taiwan (MOST 107-2221-E-027-034-MY2).

Funding

This study was supported by the Ministry of Science and Technology of Taiwan (MOST 107-2221-E-027-034-MY2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung-Wei Tsui.

Ethics declarations

Conflict of interest

The authors have declared no conflicts of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsui, HW., Kuo, CH. Retention and Partition Behaviors of Solutes in a Surfactant-Based Mobile Phase at Concentrations Approaching the Critical Micelle Concentration in Liquid Chromatography. Chromatographia 83, 1247–1256 (2020). https://doi.org/10.1007/s10337-020-03939-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-020-03939-3

Keywords

Navigation