Skip to main content
Log in

Tree-like constructions in topology and modal logic

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

Within ZFC, we develop a general technique to topologize trees that provides a uniform approach to topological completeness results in modal logic with respect to zero-dimensional Hausdorff spaces. Embeddings of these spaces into well-known extremally disconnected spaces then gives new completeness results for logics extending S4.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The notion of densely discrete has appeared in the literature under the names \(\alpha \)-scattered [26] and weakly scattered (see, e.g., [6, 7, 11]). Since the term weakly scattered is often used for a different concept (see, e.g., [24, p. 120]), we adopt Arhangel’skii’s more descriptive terminology.

  2. While the requirement that \(w_0=w\) is unnecessary, it makes Claims 4.6, 4.8, and 4.10 simpler.

  3. This can be seen as follows. Theorem 6.10(2) implies that there is a basis for \(\mathbb T_{\omega _1}^\omega \) consisting of \(\omega _1\) clopen subsets. Therefore, since \(\mathbb T_{\omega _1}^\omega \) is Lindelöf, it has at most continuum many clopen sets. Thus, the weight of \(\beta (\mathbb T_{\omega _1}^\omega )\) is at most \(\mathfrak c\), and hence \(\beta (\mathbb T_{\omega _1}^\omega )\) embeds into the Cantor cube \(2^\mathfrak c\). By [17, Sec. 2], \(\beta (\mathbb T_{\omega _1}^\omega )\) embeds into the Gleason cover of \(2^\mathfrak c\), which by Efimov’s theorem (see, e.g., [17]) embeds into \(\beta (\omega )\).

References

  1. Abashidze, M.A.: Algebraic analysis of the Gödel-Löb modal system, Ph.D. thesis, Tbilisi State University (1987) (in Russian)

  2. Aiello, M., van Benthem, J., Bezhanishvili, G.: Reasoning about space: the modal way. J. Logic Comput. 13(6), 889–920 (2003)

    Article  MathSciNet  Google Scholar 

  3. van Benthem, J., Bezhanishvili, G., ten Cate, B., Sarenac, D.: Multimodal logics of products of topologies. Stud. Log. 84(3), 369–392 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., van Mill, J.: Krull dimension in modal logic. J. Symb. Log. 82(4), 1356–1386 (2017)

    Article  MathSciNet  Google Scholar 

  5. Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., van Mill, J.: On modal logics arising from scattered locally compact Hausdorff spaces. Ann. Pure Appl. Log. 170(5), 558–577 (2019)

    Article  MathSciNet  Google Scholar 

  6. Bezhanishvili, G., Esakia, L., Gabelaia, D.: Some results on modal axiomatization and definability for topological spaces. Stud. Log. 81(3), 325–355 (2005)

    Article  MathSciNet  Google Scholar 

  7. Bezhanishvili, G., Gabelaia, D., Lucero-Bryan, J.: Modal logics of metric spaces. Rev. Symb. Log. 8(1), 178–191 (2015)

    Article  MathSciNet  Google Scholar 

  8. Bezhanishvili, G., Gabelaia, D., Lucero-Bryan, J.: Topological completeness of logics above S4. J. Symb. Log. 80(2), 520–566 (2015)

    Article  MathSciNet  Google Scholar 

  9. Bezhanishvili, G., Gehrke, M.: Completeness of S4 with respect to the real line: revisited. Ann. Pure Appl. Log. 131(1–3), 287–301 (2005)

    Article  MathSciNet  Google Scholar 

  10. Bezhanishvili, G., Harding, J.: The modal logic of \(\beta (\mathbb{N})\). Arch. Math. Log. 48(3–4), 231–242 (2009)

    Article  Google Scholar 

  11. Bezhanishvili, G., Harding, J.: Modal logics of Stone spaces. Order 29(2), 271–292 (2012)

    Article  MathSciNet  Google Scholar 

  12. Bezhanishvili, G., Morandi, P.J.: Scattered and hereditarily irresolvable spaces in modal logic. Arch. Math. Log. 49(3), 343–365 (2010)

    Article  MathSciNet  Google Scholar 

  13. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  14. Blass, A.: Infinitary combinatorics and modal logic. J. Symb. Log. 55(2), 761–778 (1990)

    Article  MathSciNet  Google Scholar 

  15. Ceder, J.G.: On maximally resolvable spaces. Fund. Math. 55, 87–93 (1964)

    Article  MathSciNet  Google Scholar 

  16. Chagrov, A., Zakharyaschev, M.: Modal Logic. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  17. Dow, A., van Mill, J.: An extremally disconnected Dowker space. Proc. Am. Math. Soc. 86(4), 669–672 (1982)

    Article  MathSciNet  Google Scholar 

  18. Engelking, R.: General Topology, 2nd edn. Heldermann, Berlin (1989)

    MATH  Google Scholar 

  19. Gillman, L., Jerison, M.: Rings of Continuous Functions. Springer, New York. Reprint of the 1960 edition, Graduate Texts in Mathematics, No. 43 (1976)

  20. Johnstone, P.T.: Stone Spaces. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  21. Kremer, P.: Strong completeness of S4 for any dense-in-itself metric space. Rev. Symb. Log. 6(3), 545–570 (2013)

    Article  MathSciNet  Google Scholar 

  22. McKinsey, J.C.C., Tarski, A.: The algebra of topology. Ann. Math. 45, 141–191 (1944)

    Article  MathSciNet  Google Scholar 

  23. Mints, G.: A completeness proof for propositional S4 in Cantor space. In: Logic at Work. Studies in Fuzziness and Soft Computing, vol. 24, pp. 79–88. Physica, Heidelberg (1999)

  24. Picado, J., Pultr, A.: Frames and Locales. Frontiers in Mathematics. Birkhäuser/Springer, Basel (2012)

    Book  Google Scholar 

  25. Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. Monografie Matematyczne, Tom 41. Państwowe Wydawnictwo Naukowe, Warsaw (1963)

    MATH  Google Scholar 

  26. Rose, D.A.: \(\alpha \)-scattered spaces. Int. J. Math. Math. Sci. 21(1), 41–46 (1998)

    Article  MathSciNet  Google Scholar 

  27. Semadeni, Z.: Banach Spaces of Continuous Functions, vol. I. PWN-Polish Scientific Publishers, Warsaw (1971)

    MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referee for careful reading, useful comments, and suggesting a simplification of the proof of Theorem 5.9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lucero-Bryan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J. et al. Tree-like constructions in topology and modal logic. Arch. Math. Logic 60, 265–299 (2021). https://doi.org/10.1007/s00153-020-00743-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-020-00743-6

Keywords

Mathematics Subject Classification

Navigation