Skip to main content

Advertisement

Log in

Analyzing drought characteristics using copula-based genetic algorithm method

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

In this study, in order to monitor meteorological droughts of the Qazvin station in Iran, drought duration and severity using historical monthly precipitation during 1964–2015 and copula functions is investigated. The characteristics of drought are computed from monthly standardized precipitation index (SPI). Different univariate distributions were fitted to characteristics of drought. According to the Kolmogorov-Smirnov goodness-of-fit test, exponential and gamma distributions were selected as appropriate for drought duration and severity, respectively. For bivariate drought analysis, five copula functions (i.e., Gumbel Hougaard, Galambos, Frank, Plackett, and Clayton) were utilized and statistical measures including root mean squared error (RMSE), maximum log-likelihood (MLL), Akaike information criterion (AIC), and Nash-Sutcliffe coefficient (NSC) were computed. Among different functions, the Galambos copula with a maximum value of NSC (0.939) and minimum values of RMSE (0.0649) and AIC (720.781) were selected as the best one for bivariate drought analysis. Genetic algorithm (GA) was used for estimation of the Galambos copula parameter and the results compared with the inference function marginals (IFM) method. The RMSE value for the copula-based GA method obtained as 0.0567 shows the superiority of GA compared with the IFM (RMSE = 0.0649). Using the Galambos copula function, the return periods and conditional probability of drought events over the study region were determined. Such probabilistic characteristics of drought can be used for water resources management and planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdi A, Hassanzadeh Y, Talatahari C, Fakheri-Fard A, Mirabbasi R (2016) Parameter estimation of copula functions using an optimization-based method. Theoric Applied Climatol 129:21–32. https://doi.org/10.1007/s00704-016-1757-2

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC 19(6):716–772

    Article  Google Scholar 

  • Amirataee B, Montaseri M, Rezaie H (2018) Regional analysis and derivation of copula-based drought severity-area-frequency curve in Lake Urmia basin, Iran. J Environ Manag 206:134–144

    Article  Google Scholar 

  • Ayantobo OO, Li Y, Song S, Javed T, Yao N (2018) Probabilistic modelling of drought events in China via 2-dimensional joint copula. J Hydrol 559:373–391

    Article  Google Scholar 

  • Capéraà P, Fougères AL, Genest C (1997) A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika 84(3):567–577

    Article  Google Scholar 

  • Da Rocha Júnior RL, dos Santos Silva FD, Costa RL, Gomes HB, Pinto DDC, Herdies DL (2020) Bivariate assessment of drought return periods and frequency in Brazilian northeast using joint distribution by copula method. Geosciences 10(4):135

    Article  Google Scholar 

  • De Michele C, Salvadori G (2003) A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas. J Geophys Res 108(D2):4067

    Article  Google Scholar 

  • Dodangeh E, Shahedi K, Solaimani K, Shiau JT, Abraham J (2019) Data-based bivariate uncertainty assessment of extreme rainfall-runoff using copulas: comparison between annual maximum series (AMS) and peaks over threshold (POT). Environ Monit Assess 191(2):67

    Article  Google Scholar 

  • Ekanayake E, Perera K (2014) Analysis of drought severity and duration using copulas in Anuradhapura, Sri Lanka. British J Environ Climate Change 4(3):312–327

    Article  Google Scholar 

  • Elshorbagy A, Corzo G, Srinivasulu S, Solomatine DP (2010) Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-part 1: concepts and methodology. Hydrol Earth Syst Sci 14(10):1931–1941

    Article  Google Scholar 

  • Genest C, Ghoudi K, Rivest LP (1995) A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika 82(3):543–552

    Article  Google Scholar 

  • Genest C, Rivest LP (1993) Statistical inference procedures for bivariate Archimedean copulas. J Am Stat Assoc 88(423):1034–1043

    Article  Google Scholar 

  • Hayes MJ, Svoboda MD, Wilhite DA, Vanyarkho OV (1999) Monitoring the 1996 drought using the standardized precipitation index. Bull Am Meteorol Soc 80(3):429–438

    Article  Google Scholar 

  • Joe H (1997) Multivariate models and multivariate dependence concepts. CRC Press

  • Kim TW, Valdés JB, Yoo C (2003) Nonparametric approach for estimating return periods of droughts in arid regions. J Hydrol Eng 8(5):237–246

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: 8th conference on applied climatology. American Meteorological Society, Boston

    Google Scholar 

  • Mirabbasi R, Fakheri-Fard A, Dinpashoh Y (2012) Bivariate drought frequency analysis using the copula method. Theor Appl Climatol 108(1–2):191–206

    Article  Google Scholar 

  • Nabaei S, Sharafati A, Yaseen ZM, Shahid S (2019) Copula based assessment of meteorological drought characteristics: regional investigation of Iran. Agric For Meteorol 276:107611

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models. 1. A discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Nelsen RB (2006) An introduction to copulas. Springer, New York

    Google Scholar 

  • O’Reilly UM, Yu T, Riolo R, Worzel B (2005) Genetic programming theory and practice II. Springer, Boston

    Book  Google Scholar 

  • Poulin A, Huard D, Favre AC, Pugin S (2007) Importance of tail dependence in bivariate frequency analysis. J Hydrol Eng 12(4):394–403

    Article  Google Scholar 

  • Sadri S, Burn DH (2012) Copula-based pooled frequency analysis of droughts in the Canadian prairies. J Hydrol Eng 19(2):277–289

    Article  Google Scholar 

  • Serinaldi F, Bonaccorso B, Cancelliere A, Grimaldi S (2009) Probabilistic characterization of drought properties through copulas. Phys Chem Earth 34(10–12):596–605

    Article  Google Scholar 

  • Shiau J (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20(5):795–815

    Article  Google Scholar 

  • Shiau JT, Modarres R (2009) Copula-based drought severity-duration-frequency analysis in Iran. Meteorol Appl 16(4):481–489

    Article  Google Scholar 

  • Shiau J‐T, Feng S, Nadarajah S (2007) Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrol Process 21:2157–2163. https://doi.org/10.1002/hyp.6400

  • Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publ Inst Stat Univ Paris 8:229–231

    Google Scholar 

  • Song S, Singh VP (2010) Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stoch Env Res Risk A 24:783–805

    Article  Google Scholar 

  • Tosunoglu F, Can I (2016) Application of copulas for regional bivariate frequency analysis of meteorological droughts in Turkey. Journal of the International Society for the Prevention and Mitigation of Natural Hazards 82:1457–1477

    Google Scholar 

  • Tosunoğlu F, Onof C (2017) Joint modelling of drought characteristics derived from historical and synthetic rainfalls: application of generalized linear models and copulas. J Hydrol: Reg Studies 14:167–181

    Google Scholar 

  • Van de Vyver H, Van den Bergh J (2018) The Gaussian copula model for the joint deficit index for droughts. J Hydrol 561:987–999

    Article  Google Scholar 

  • Yoo J, Kim U, Kim TW (2013) Bivariate drought frequency curves and confidence intervals: a case study using monthly rainfall generation. Stoch Env Res Risk A 27(1):285–295

    Article  Google Scholar 

  • Zhang L, Singh VP (2012) Bivariate rainfall and runoff analysis using entropy and copula theories. Entropy 14:1784–1812

    Article  Google Scholar 

  • Zhang L, Wang Y, Chen Y, Bai Y, Zhang Q (2020) Drought risk assessment in Central Asia using a probabilistic copula function approach. Water 12(2):421

    Article  Google Scholar 

  • Zin WZW, Jemain AA, Ibrahim K (2013) Analysis of drought condition and risk in peninsular Malaysia using standardised precipitation index. Theor Appl Climatol 111(3–4):559–568

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Babazadeh.

Additional information

Responsible Editor: Zhihua Zhang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiafar, H., Babazadeh, H., Sedghi, H. et al. Analyzing drought characteristics using copula-based genetic algorithm method. Arab J Geosci 13, 745 (2020). https://doi.org/10.1007/s12517-020-05703-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-020-05703-1

Keywords

Navigation